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Abstract

Since customer choice rules would greatly affect the performance of retail facilities, they
should be considered when a chain wants to locate a new facility in a competitive market.
In the existing studies, customers’ choice behavior is usually considered as homogeneous,
which means that all customers patronize facilities with one kind of customer choice rules:
the deterministic rule, the probabilistic rule or the multi-deterministic rule. However, it
is not in line with reality as we have investigated people’s choice behavior on convenience
stores by questionnaire surveys, and survey results show that different customers may pa-
tronize facilities with different choice rules. In order to study competitive facility location
problems in which customers’ choice behavior is heterogeneous, we classify customers as
three types by customer choice rules, the relative proportions of which are calculated based
on questionnaires. A customer classification based competitive facility location model in
the plane is proposed in which location and quality of the new facility are to be determined
in order to maximize the profit of the locating chain. Since the model is non-convex and
discontinuous, and location problems in practice are usually large-scale, four kinds of heuris-
tic algorithms instead of exact algorithms are designed for obtaining a satisfactory solution
including Particle Swarm Optimization, Tabu Search, Simulated Annealing and Genetic
Algorithm. Numerical experiments show that Particle Swarm Optimization performs best
both in computation efficiency and solution precision. Comparisons among location results
employing different customer proportions reveal that customer proportion significantly af-
fects location results. Most importantly, the locating chain may lose large profit once the
customer proportion is wrongly estimated. Maximum profit loss is more than 20% in our
cases.

Keywords: Competitive facility location, Customer choice rules, Heuristic algorithms,
Customer classification
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1. Introduction

How to locate a facility in a competitive market environment has become a major concern
for managers. Where to locate a new facility is a vitally important strategic decision for
a firm, as the location has a major and long-term influence on the profit of the firm, and
it cannot be easily relocated as setting up a facility usually requires a massive investment.
Taking convenience store industry as an example, convenience stores develop in China since
1990s. Chains are constantly working on finding good locations to open new stores in order
to obtain larger market share and profits. The number of convenience stores in China has
exceeded 122 thousands up to 2018, maintaining a growth rate of over 10 percent in recent
years. In the meantime, many convenience stores close the door because of poor location.
In 2018, Lin Jia, a famous convenience store chain, closed its 168 stores in Beijing. In the
increasingly drastic market, location of convenience stores is particularly important.

Many researchers have been focusing on the competitive facility location problem and
a number of competitive location models can be found in the literature. Considering the
competitive facility location is a problem of wide range which can be applied to many
practical cases, competitive location models vary in the ingredients which form the models.
Some competitive location models are summarized in Table 1.

Table 1: Summary of competitive location models.

Location space
The plane

(Fernández et al., 2019)

A discrete set

(Fernández et al., 2017b)

The number of new facilities
Single

(Blanquero et al., 2014)

Multiple

(Blanquero et al., 2016)

The market environment
Static

(Plastria, 2001)

Dynamic

(Drezner, 2009)

The demand
Elastic

(Redondo et al., 2012)

Inelastic

(Redondo et al., 2009)

In all of these location studies, one of the most important aspects for making a better
location decision is to understand how customers make choice among all facilities in an
area. Various approaches are proposed to formulate the interrelationship among customers
and facilities in the literature, including the proximity approach, the utility approach, the
cover-based approach and the gravity model, etc. (Drezner, 2014). With the development of
different approaches, different kinds of customer choice rules are proposed. The commonly
used customer choice rules in the literature can be classified into three kinds:

• The deterministic rule: A customer only patronizes the facility that attracted him/her
most (Drezner, 1994a).

• The probabilistic rule: A customer splits his/her demand among all facilities in an
area proportionally to the attraction of each facility to him/her (Drezner, 1994b).
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• The multi-deterministic rule: A customer split his/her demand among chains by pa-
tronising only one facility from each chain, the one with the highest attraction, and
the demand is split among those facilities proportionally to their attraction (Fernández
et al., 2017a).

Although each of these customer choice rules has been used to calculate the market
share captured by facilities and good estimations are obtained in some cases, they still have
trouble representing customer behavior under more general conditions. Existing studies
assume customers patronize facilities with one kind of choice rules, but what is closer to
reality is that different customers may patronize based on different rules. Customers who
prefer to patronize the nearest facility or have a strong preference for one particular facility
are more likely to adopt the deterministic rule. Customers who have no obvious preference
among facilities may patronize as the probabilistic rule. The multi-deterministic rule is
for those customers who would go to different facilities depending on the goods he/she
would buy. Traditional location studies mostly focus on the location of generalized facilities
instead of a specific industry. However, customer behavior in different industries has quite
large difference. For instance, compared to snacks, people show more loyalty when they
buy electronic products, leading to a less proportion of customers using the probabilistic
rule. Customers are more likely to behave with different choice rules when they patronize a
convenience store as convenience stores are more and more widespread and the goods they
sold are basically homogeneous.

We analysed the choice behavior of 123 people near Beijing University of Chemistry
Technology choosing convenience stores through questionnaire surveys. In the questionnaire,
we listed three options corresponding to three kinds of customer choice rules. The result of
customer choice rules are shown in Table 2. It reveals that these three customer choice rules
are able to represent most people’s choice behavior on convenience stores. Questionnaire
results show that each of these three choice rules is employed by a part of people when they
choose convenience stores to patronize. Table 2 shows that the customer proportion of the
deterministic type, the probabilistic type and the multi-deterministic type on convenience
stores is 30.33%: 40.16%: 29.51%.

Table 2: The questionnaire results.

Customer type The number of customers Customer proportion

The deterministic type 37 30.08%

The probabilistic type 49 39.84%

The multi-deterministic type 36 29.51%

Others 1 0.01%

In this article, we classify customers into three types according to survey results rather
than one type. Furthermore, a customer classification based facility location model is formu-
lated in which the customer proportion (the relative proportions of three types’ customers)
is considered. The model constructed in this way is closer to reality and has a better esti-
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mation of the market share captured by each facility. The main contributions of this paper
are as follows:

(1) In order to formulate customers’ choice behavior as realistic as possible, we classify
customers into three types according to the questionnaire surveys for investigating cus-
tomers’ choice behavior on convenience stores. A customer classification based facility
location model in the plane is formulated. Location and quality of the new facility are
to be determined in order to maximize the profit of the locating chain.

(2) Four heuristic algorithms, including: Particle Swarm Optimization (PSO), Tabu Search
(TS), Simulated Annealing (SA) and Genetic Algorithm (GA), are designed to solve
this model. We compared the performance of these four heuristic algorithms on solving
our problem through numerical experiments and results show that PSO is superior to
other three algorithms in computation efficiency and solution precision.

(3) The influence of different customer proportions on the location results is investigated.
In particular, a set of location problems are generated to calculate the profit loss of the
locating chain when the customer proportion is wrongly employed.

The remainder of this paper is organized as follows. In Section 2, we review some
important literature related to our work. Section 3 formulates a single facility location
model in which the customers are classified into three types. Four heuristic algorithms are
designed to solve the model in Section 4. Section 5 presents some computational experiments
for evaluating the influence of employing different proportions of customers on location
results and comparing the performance of these algorithms. Finally, Section 6 summarizes
the paper briefly and gives some directions for future research.

2. Literature review

Existing facility location studies provide various location models to address different
kinds of location cases. We first review the competitive location problems and relevant
approaches for modeling the competition relationship. Furthermore, we introduce three
customer choice rules which are commonly employed in location problems. Finally, relevant
methods for solving location models are reviewed.

2.1. Competitive location problems and relevant approaches

Considering the market in the reality is competitive generally, most facility location
studies aim at solving competitive facility location problems. The competitive location
problem was first proposed by Hotelling (1990). He discussed the location problem of two
competitive sellers locating one facility each on a linear market, and customers choose one
of two facilities to patronize. From then on a surge of studies in competitive location arise.
For an overview of competitive problems, readers could refer to Plastria (2001), Eiselt and
Laporte (1997), Drezner (2014). In the competitive location studies, various approaches
have been developed to model the competitive relationship of facilities, which are the basis
for estimating the market share captured by facilities. The proximity approach, which
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assumed customers patronize the closest facility, was first used in Hotelling (1990). Drezner
(1994a) developed the utility approach in which customers consider the utility of facilities
rather than just the distance. Drezner et al. (2011) introduced the cover-based approach
to estimating market share. Each competing facility has a coverage area, the size of which
depends on the attractiveness of the facility. A customer in a facility’s coverage area is
attracted to the facility. Both the utility approach and the cover-based approach imply an
important assumption: the ”all or nothing” assumption, which means for a certain demand
point, a facility captures either all the market share of the demand point, or nothing. Except
these approaches, another more commonly used approach for estimating market share is the
gravity model. Most competitive location problems in the plane have recently used the
gravity model (Drezner, 2014).

The gravity model is based on Newton’s law of universal gravitation, and has been used
as the basic of numerous facility location models. Huff (1964) formulated the probability of a
customer at a given demand point traveling to a shopping center as a function of attraction
he/she feels from shopping centers in the area. In the gravity model, the attraction of a
facility for a customer is modeled using a function which is non-decreasing with respect to
quality of the facility and non-increasing with respect to the distance between the facility and
the customer. In Huff’s model, the quality of a facility is represented by the size (floor area)
of the shopping center, which is also described as its service level in some other studies (Dan
and Marcotte, 2019). Drezner (1994b) formulated a single retail facility location model in
the plane based on the gravity model. The objective of the model is to find the optimal
location of a new facility so as to maximize the market share captured by the locating
chain with given quality value of the new facility. Rather than ”all or nothing” assumption,
the gravity model formulates the attraction of facilities to demand points, based on which
customers’ varied behavior can be interpreted. The gravity model has been successfully
applied in many competitive location studies due to its great merits such as simplicity and
ease of understanding (Fernández et al., 2017a; Blanquero et al., 2016; Drezner and Drezner,
2004). Thus we also use the gravity model to formulate the location model in our study.

2.2. Customer choice rules

Generally, the purpose of competitive facility location is to obtain higher market share
or profit of the locating chain. In order to estimate the market share properly, we need
to understand how customers choose facilities to patronize. Customers’ choice behaviour is
an important factor that must be taken into account when chains make location decisions.
According to existing location studies, customers’ choice behavior can be summarized into
three kinds of rules.

The first one is the deterministic rule which assumes that a customer only patronizes the
facility that attracted him/her most. The deterministic rule is also called binary rule, first
proposed in Hotelling (1990) for a location problem in the line market. Later, this customer
choice rule has been widely used in many competitive facility location models, especially in
the (r|Xp)-medianoid model which was originally introduced by Hakimi (1983).

The second customer choice rule commonly used in the literature is the probabilistic
rule which assumes that a customer splits his/her demand over all facilities in an area
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proportionally to the attraction of these facilities. It is also known as the proportional rule,
first investigated by Huff (1964), along with the gravity model. The probabilistic rule has
been widely used in the location studies especially in Huff-like location problems (Drezner,
2009; Drezner and Drezner, 2004; Drezner, 1998).

The third customer choice rule is the multi-deterministic choice rule suggested by Hakimi
(1990), also named as the partially binary rule. It assumes that a customer split his/her
demand among the most attractive facilities of each chain, and the demand is split among
those facilities proportionally to their attraction. The multi-deterministic choice rule is
different from the probabilistic rule as customers with this rule won’t patronize all facilities
that belong to the same chain. It is also distinct from the deterministic rule as customers
following this rule patronize more than one single facility. Following this idea, Serra and
Colomé (2001) and Fernández et al. (2017a) studied location problems in discrete points
and in the plane, respectively.

The location problems employing different kinds of customer choice rules has been consid-
ered in some literature. For example, Suárez-Vega et al. (2004) studied continuous location
problems with six scenarios considering three customer choice rules and two types of goods
(essential or unessential). In each scenario one kind of customer choice rule and one type
of goods are considered. Biesinger et al. (2016) also employed the same scenarios when
formulating location models on discrete space.

Based on the above literature, customers’ choice behavior is an inevitable issue when
a chain wants to locate a new facility. Previous researchers mainly assume all customers
patronize with the same kind of choice rule. However, customers may patronize with dif-
ferent choice rules according to our survey for investigating customers’ choice behavior on
convenience stores. To the extent of our knowledge, there is no research which has studied
the location problem with different types of customers. In this paper, we classify customers
into three types by customer choice rules and investigate the influence of different customer
proportions on the location results and on the profit obtained by the locating chain.

2.3. Methods for solving location problems

Since many competitive location models are difficult to solve because of the non-convexity
and discontinuity of the objective function, heuristic algorithms are widely used to obtain
acceptable solutions in location studies. A multi-start heuristic algorithm, the Weiszfeld-
like algorithm, was proposed in Fernández et al. (2007) for solving the location problem in
the plane. Redondo et al. (2009) investigated an evolutionary algorithm called UEGO for
solving the competitive facility location problem with a leader and a follower. Genetic Algo-
rithm was designed for solving discrete competitive facility location problems in Lančinskas
et al. (2017). Tabu Search was employed to solve a bi-level facility location model in Shan
et al. (2019). A two-phase heuristic approach was designed for the discrete dynamic location
problem in da Gama and Captivo (1998). All these heuristic algorithms showed good per-
formance in solving corresponding location problems. Three heuristic algorithms, including
Tabu Search (TS), Simulated Annealing (SA) and Genetic Algorithm (GA), were designed
to solve facility location problems in Arostegui Jr et al. (2006). The comparison results
indicated that Tabu Search performed best in most cases. In this study, we design PSO,
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GA, SA and TS for our problem and compare the relative performance of these algorithms
in solving our location model.

3. Problem description

We consider a competitive single facility location problem with the consideration of
customer classification. The demand, assumed to be inelastic, is assembled at demand
points. Locations and demand volume of demand points are given. Locations and the quality
of existing facilities are also known. Considering the location problem we are studying is
continuous, we use Euclidean distance formula to calculate the distance between two places
in our problem. The attraction of facility j that a customer at demand point i feels is
formulated as quality of the facility divided by the distance effect: uij = αj/gi(dij). Figure 1
is drawn to obtain an intuitive image of the location problem. In Figure 1, 20 demand points
denoted by dots distribute in a 10 by 10 miles area. There are 2 competing chains in this
area, owning 3 and 2 existing facilities respectively, represented by triangles and squares.
Different graphics are used to represent facilities belonging to different chains. The size of
a triangle or a square is construed as the quality of the corresponding facility. The bigger a
triangle or a square is, the higher the quality of the corresponding facility is. Similarly, the
size of a dot denotes the demand volume of the corresponding demand point. Now chain 1
is about to locate a new facility in the area.
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Demand point
Existing facilities of chain 1
Existing facilities of chain 2

Figure 1: Problem description.

7



Customers are classified into three kinds by three customer choice rules. The determin-
istic customers patronize the facility which has the largest attraction to them. The proba-
bilistic customers probabilistically patronize all the facilities in the area in proportion to the
attraction of these facilities. The multi-deterministic customers probabilistically patronize
the most attractive facility of each chain proportionally to the attraction of these facili-
ties. The relative proportions of these three types’ customers have been obtained through
questionnaires.

As customer behavior is highly subjective, the three kinds of customer choice rule may
not be able to reflect the choice behavior of every customer. Some customers may choose fa-
cilities by different choice rules in different situations. A customer could be the deterministic
customer sometimes, and be the probabilistic customer at other times. This kinds of uncer-
tainty makes the customer proportion uncertain, and further makes the estimated market
share uncertain. For obtaining better location result, our location model should be as close
to the reality as possible. So we consider that a demand point may have multiple possible
customer proportion. Based on each kind of proportion the demand point’s market share
that the locating chain obtains can be calculated. Then the demand point’s market share
that the locating chain obtains can be represented as a fuzzy variable. The possibility of
each element in the fuzzy variable is explained as the closeness of corresponding proportion
to the actual customer proportion in the demand point. For the convenience of computing,
we calculate the expected value of fuzzy market share, and formulate the location model
based on the expected value.

The purpose of this problem is finding the best place to locate the new facility and
determining the optimal quality in order to maximize the profit obtained by the locating
chain. The profit of the chain is calculated as the income due to the market share minus
the operational costs.

3.1. Notations

For better understanding the mathematical formulations in this paper, notations that
will be used are shown in Table 3.

Table 3: List of notations.

Notations
Sets and indexes
n number of demand points
m number of existing facilities
k number of existing chains
i index of demand points, i = 1, ..., n
c index of existing chains, c = 1, ..., k (chain 1 is the locating chain)
j index of existing facilities, j = 1, ...,m (we assume that from j = j1

min(= 1)
to j1

max the facilities belong to chain c = 1(j1
min < j1

max); from
j = j2

min(= j1
max + 1) to j2

max belong to chain c = 2;...; from
j = jkmin(= jk−1

max + 1) to jkmax(= m) belong to chain c = k)
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Decision variables
x location of the new facility, x = (x1, x2)
α quality of the new facility
Parameters
pi location of demand point i, pi = (pi1, pi2)
wi demand volume (or buying power) at pi, wi > 0
fj location of existing facility j, fj = (fj1, fj2)
dij distance between demand point i and facility j, dij > 0,

dij =
√

(pi1 − fj1)2 + (pi2 − fj2)2

di(x) distance between demand point i and the new facility located at x
αj quality of facility j, αj > 0
αmin minimum level of quality for the new facility, αmin > 0
αmax maximum level of quality for the new facility, αmin ≥ αmax

S region of the plane where the new facility can be located
g(·) a continuous non-negative and non-decreasing function, which modulates

the decrease of attractiveness as a function of distance
uij attraction that demand point i feels for the facilityj (or utility of the

facility j perceived by people at demand point i). In this paper,
uij = αj/gi(dij)

ui(x, α) attraction that customers in demand point i feel for the new facility
located at x with quality α

uci maximum attraction that customers in demand point i feel for all of the
existing facilities of chain c, uci = max{uij : j = jcmin, ..., j

c
max}

λ1 the proportion of customers using the deterministic rule
λ2 the proportion of customers using the probabilistic rule
A(x, α) set of demand points to which the maximum attraction of the locating

chain’s facilities (including chain 1’s existing facilities and the new facility
located at x with quality α) is larger than other chains’ facilities,
A(x, α) = {i|max {u1

i , ui(x, α)} ≥ max{uci : c = 2, ..., k}}
MD(x, α) the market share captured by the chain 1’s existing facilities and by the

new facility located at x with quality α when customers are deterministic
MP (x, α) the market share captured by the chain 1’s existing facilities and by the

new facility located at x with quality α when customers are probabilistic
MM(x, α) the market share captured by the chain 1’s existing facilities and by the

new facility located at x with quality α when customers are
multi-deterministic

MC(x, α) the market share captured by the chain 1’s existing facilities and by the
new facility located at x with quality α when customers are classified into
three types by customer choice rules

F (·) a function that converts the market share into expected sales
G(x, α) a function for evaluating the operational costs of a facility located at x

with quality α
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E the operational costs of chain 1’s existing facilities

3.2. Market share obtained by employing single customer choice rule

We first formulate the market share obtained by the locating chain when customers’
choice behavior is considered as homogeneous, which means that all customers patronize
facilities with one kind of customer choice rules.

In the deterministic rule, it is assumed that a customer at a demand point will only
patronize the facility that has the largest attraction to the customer, disregarding other fa-
cilities which are less attractive. We define A(x, α) as the set of demand points to which the
maximum attraction of the locating chain’s facilities is larger than other chains’ facilities.
When all customers in demand i are the deterministic type, the market share of the demand
point captured by the chain 1 is

wDi(x, α) =

{
0 i /∈ A(x, α)
wi i ∈ A(x, α)

(1)

where wi denotes the demand volume at demand point i. Then the market share of all
demand points captured by the chain 1 is

MD(x, α) =
n∑
i=1

wDi(x, α). (2)

In the probabilistic rule, it is assumed that that a customer splits his/her demand over
all facilities in an area proportionally to the attraction he/she feels from each facility. When
all customers in demand i are the probabilistic type, the market share captured by the chain
1 is

wPi(x, α) = wi ×

ui(x, α) +

j1max∑
j=1

uij

ui(x, α) +
m∑
j=1

uij

, (3)

where uij is the attraction that demand point i feels for the facilityj, uij = αj/gi(dij), and
ui(x, α) is the attraction that customers in demand point i feel for the new facility. The
function g(d) in the attraction function is a continuous non-negative and non-decreasing
function. The form of g(d) is usually defined as g(d) = dη for some η > 0 (Huff, 1964;
Nakanishi and Cooper, 1974). Then the market share of all demand points captured by the
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chain 1 is

MP (x, α) =
n∑
i=1

wPi(x, α). (4)

In the multi-deterministic rule, it is assumed that a customer probabilistically patronizes
the most attractive facilities from each chain in the area. He/she will patronize these facilities
proportionally to the attraction he/she feels from each facility. When all customers in
demand i are the multi-deterministic type, the market share captured by the chain 1 is

wMi(x, α) = wi ×
max {ui(x, α), u1

i }

max {ui(x, α), u1
i }+

k∑
c=2

uci

, (5)

where uci is the maximum attraction that customers in demand point i feel for all of the
existing facilities of chain c, uci = max{uij : j = jcmin, ..., j

c
max}.Then the market share of all

demand points captured by the chain 1 is

MM(x, α) =
n∑
i=1

wMi(x, α). (6)

3.3. Fuzzy market share obtained by customer classification

Next we formulate the market share obtained by the locating chain when customers’
choice behavior is considered as heterogeneous, which means that different customers pa-
tronize facilities with different kinds of customer choice rules. Customers are classified into
three kinds by customer choice rules. The market share of chain 1 is estimated based on the
customer classification.

However, in the reality, some customers’ choice behavior may be uncertain. They may
patronize facilities by different choice rules in different situations. For example, a customer
may mostly patronize as the deterministic rule, and sometimes patronizes as the probabilistic
rule. For these customers, one kind of choice rule can not accurately reflect their choice
behavior. A customer could be the deterministic type sometimes, and be the probabilistic
type at other times. A demand point may have multiple possible customer proportions.
This uncertainty makes the customer proportion uncertain, and further makes the market
share which is calculated based on the customer proportion uncertain. For better estimating
the market share, we use fuzzy variables instead of real variables to estimate each demand
point’s market share captured by chain 1.

For each demand point i, there are si kinds of possible customer proportions:
b1
i = λ1

i1 : λ1
i2 : λ1

i3 with γi(b
1
i ) = µ1

i ,
b2
i = λ2

i1 : λ2
i2 : λ2

i3 with γi(b
2
i ) = µ2

i ,
...,
bsii = λsii1 : λsii2 : λsii3 with γi(b

si
i ) = µsii .

(7)
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Based on these customer proportions, demand point i’s estimated market share obtained
by chain 1 can be calculated:

w1
Fi(x, α) = λ1

i1 × wDi(x, α) + λ1
i2 × wPi(x, α) + λ1

i3 × wMi(x, α),
w2
Fi(x, α) = λ2

i1 × wDi(x, α) + λ2
i2 × wPi(x, α) + λ2

i3 × wMi(x, α),
...,
wsiFi(x, α) = λsii1 × wDi(x, α) + λsii2 × wPi(x, α) + λsii3 × wMi(x, α).

(8)

which can form a fuzzy variable:

w̃Fi(x, α) =
γi(b

1
i )

w1
Fi(x, α)

+
γi(b

2
i )

w2
Fi(x, α)

+ ...+
γi(b

si
i )

wsiFi(x, α)
. (9)

As different demand points may have different numbers of customer proportions, the
structure of fuzzy variables which are used to represent the market share of different de-
mand points may be different. To facilitate easy calculation, we calculate the mathematical
expectation of w̃Fi(x, α). We follow the method proposed by Liu and Liu (2002) to calculate
the mathematical expectation of fuzzy variables:

E(w̃Fi(x, α)) =

si∑
l=1

(eli × w1
Fi(x, α)) (10)

where

eli =
1

2
× (max

1≤q≤l
µ1
i − max

0≤q≤l−1
µ1
i ) +

1

2
× ( max

l≤q≤si
µ1
i − max

l+1≤q≤si+1
µ1
i ), µ

0
i = µsi+1

i = 0. (11)

Then the market share of all demand points captured by the chain 1 is

MF (x, α) =
n∑
i=1

E(w̃Fi(x, α)). (12)

3.4. Profit maximization model

The aim of our problem is to maximize the profit of the locating chain. The problem to
be solved is then

max Π(x, α) = F (MF (x, α))−G(x, α)− E
s. t. α ∈ [αmin, αmax]

x ∈ S
(13)

where F (·) is a strictly increasing real valued function which converts the market share
into expected sales, G(x, α) is a function for evaluating the operational costs of the new
facility when the new facility is located at x with quality α, Π(x, α) is the profit obtained
by the chain, and E is the operational costs of the locating chain’s existing facilities. The
constraint α ∈ [αmin, αmax] gives the minimum value and the maximum value that the qual-
ity of a facility may take in practice. The region of the plane where the new facility can
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be located is denoted by S. The function F is always assumed to be linear, for example,
F (MC(x, α)) = c ·MC(x, α), where c is the average income per unit of good sold (Fernández
et al., 2007). The operational cost function G(x, α) is considered to be separable, i.e., of
the form G(x, α) = G1(x) +G2(α), as it is influenced by the variables x and α respectively.
The function G1(x) increases when x is closer to demand points, which reflects the higher
operational costs when the facility is located around the demand points. The function G1(x)
also increases when wi is bigger, since the operational costs is higher when the facility is
located around places with more people. Possible expressions for G1(x) which can be found
in Fernández et al. (2007) are

G1(x) =
n∑
i=1

φi(dix),

with

φi(dix) = wi/((di(x))φi0 + φi1), φi0, φi1 > 0,

or

φi(dix) = wi/(e
di(x)

φi0 − 1 + φi1), φi0, φi1 > 0.

The function G2(α) should be a non-decreasing and convex function, since the higher the
quality of the facility is, the higher the operational costs is, at an increasing rate. A few
typical forms that can be found in Fernández et al. (2007) for G2(α) are

G2(α) = (α/α0)α1 , α0 > 0, α1 ≥ 1,

or

G2(α) = e
α
α0

+α1 − eα1 , α0 > 0.

4. Algorithm

With the abundance of location research, many methods are employed to solve location
models. Drezner and Drezner (2004) devise a the Big Triangle Small Triangle method to
solve the location problem in which the decision variable is the location of the new facility
and customers are the probabilistic type. In our location model, the decision variables
are location and quality of the new facility, and customers are three different type, which
makes the objective function discontinuous. These characteristics makes the Big Triangle
Small Triangle method unsuitable for our model. As most of competitive facility location
models are non-convex and discontinuous, heuristic algorithms have been widely used in the
location studies. An empirical comparison of Tabu Search (TS), Simulated Annealing (SA),
and Genetic Algorithm (GA) for facility location problems can be found in Arostegui Jr
et al. (2006). In Özgün-Kibiroğlu et al. (2019), Particle Swarm optimization (PSO) was
designed to solve a location model and good solutions are obtained. In this section, we also
design PSO for our problem, and compare the performance of PSO, GA, TS and SA in
solving our location model.
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4.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a novel random optimization method with simple
structure, easy realization and good utility. It is based on swarm intelligence which has a
powerful ability of global optimization. What is most important is that the implementation
procedure of PSO has less requirement on the objective function. Considering the function
constructed in this paper is non-convex and discontinuous, PSO is an appropriate heuristic
algorithm to solve this problem.

Particle Swarm Optimization Algorithm was first proposed by Eberhart and Kennedy
(1995). It is a swarm intelligence based evolutionary algorithm inspired by the regularity of
birds’ movement. When birds are searching food in a space, they have no idea where the
food is, but they know how far they are from the food roughly, so the best search strategy
is searching around the bird which is nearest to the food. PSO’s principle is similar to the
strategy of birds searching food. Every bird is called a particle in the algorithm with two
properties: position and speed. Every position in the solution space represents a feasible
solution. Speed of a particle determines its next move’s direction and distance. A fitness
function is defined to judge if a position is good or bad. In each iteration every particle’s
speed is calculated based on the messages of their own historical best position and the total
swarm’s current best position. Particles will be clustered in the area where is near to the
optimal solution gradually. Then they keep searching around the area and the optimal
solution or the near optimal solution will be found.

We first randomly generate Q particles to constitute a swarm. As there are 3 values
(longitude, latitude and quality value of the new facility) to be determined in our prob-
lem, each particle’s position is generated as a 3 dimensional vector, for example, par-
ticle q’s position Xq = (xq1, xq2, αq), q = 1, 2, ..., Q. Its speed is also a 3 dimension-
al vector Vq = (vq1, vq2, vq3), q = 1, 2, ..., Q. The objective Π(Xq) is set as the fitness
function in our algorithm, which is used to measure if a position is good or bad. The
personal best position that particle q has found in the searching process is denoted as
Pbestq = (pbq1, pbq2, pbq3), q = 1, 2, ..., Q. The global best position that the swarm has found
in the searching process is denoted as Gbest = (pg1, pg2, pg3). After each iteration, these
two positions can be obtained, and particles will update their positions and speeds as

vq1 = h× vq1 + c1 × r1 × (pbq1 − xq1) + c2 × r2 × (pg1 − xq1)

vq2 = h× vq2 + c1 × r1 × (pbq2 − xq2) + c2 × r2 × (pg2 − xq2)

vq3 = h× vq3 + c1 × r1 × (pbq3 − αq) + c2 × r2 × (pg3 − αq)
xq1 = xq1 + vq1

xq2 = xq2 + vq2

αq = αq + vq3, 1 ≤ q ≤ Q,

(14)

where h is the inertia coefficient that adjusts the balance between the global search and the
local search. A higher value of h will improve the algorithm’s global search ability, and a
lower value of h will increase the algorithm’s local search ability. Higher global ability is
required at the algorithm’s early stage so as to enlarge the search scopes. Higher local search
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ability is better for the algorithm’s later period so that the algorithm can rapidly converge
to optimum. In our research, the inertia coefficient h is dynamically adjusted as follow

h =
e−k × (hmax − hmin)× (kmax − k)

kmax
+ hmin, (15)

where hmax and hmin are the maximum value and the minimum value of the inertia coefficient;
k is the current generation number; kmax is the maximum generation number.

r1 and r2 are two random numbers distributed in the range (0,1); c1 and c2 are accel-
eration coefficients representing the particle’s dependence on itself (self cognition behavior)
and on the swarm (social behavior), respectively. A relatively high value of c1 will encourage
particles to move toward their local best positions, while higher values of c2 will result in
faster convergence to the swarm best position. In practice the value of c1 are usually set e-
qual to the value of c2 in order to represents an equal emphasis on both directions. So c1 and
c2 are called acceleration coefficients below. The process of Particle Swarm Optimization
used in this article is summarized below.

Step 1: Initialize the particle swarm: determine the swarm size Q, randomly generate the
position Xq and the speed Vq of each particle.

Step 2: Calculate the fitness value Π(Xq) of each particle.

Step 3: For each particle, compare its fitness value Π(Xq) with its personal best value
Π(Pbestq); if Π(Xq) > Π(Pbestq), then update its personal best position Pbestq,
Pbestq = Xq.

Step 4: Find the maximum personal best value among all particles; assign the corresponding
position value to the global best position Gbest.

Step 5: Update particles’positions and speed according to the formulation 14.

Step 6: If the terminal condition (the maximum number of iterations has been reached)
is met, end the iteration and output the global best value and the corresponding
position; otherwise back to Step 2.

4.2. Genetic Algorithm

Genetic Algorithm (GA) is an evolutionary algorithm which is derived from the evolu-
tionary law of biology in the natural environment. GA was first proposed by Holland (1992)
and has becoming one of the most popular heuristic algorithms for optimization problems.
Starting from an initial population, the algorithm evaluates the fitness of each individual
in the population. Then the individual with a higher fitness value could be selected with a
higher probability to produce offspring after crossover and mutation process. After several
generations the individual with higher fitness value is generated. In our paper, we adopt
binary codes to design Genetic Algorithm. As the problem we studied is to locate a new
facility in the continuous space, our decision variables are continuous variables. In order to
use binary codes to represent solutions, we first need to calculate how many binary numbers
is required. For example, the ranges of new facility’s abscissa value x1 and ordinate value x2

are from 0 to 10, and the range of new facility’s quality value α is from 0.5 to 5. If x1 is ac-
curate to 3 decimal places, at least we need 104(= 10 ∗ 103) numbers. Since 213 < 104 < 214,
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we need 14 binary numbers to represent a solution of x1. By this way, we can calculate that
we need 41 binary numbers to form a chromosome as a solution including x1, x2 and α.
When we calculate the fitness value of each chromosome, we first need to convert binary to
decimal, then convert decimal to the numbers of our range. (15) and (16) gives an example
of converting a fourteen-digit binary number to the range of [0, 10]:

(b0...b12b13)2 = (
13∑
i=0

(bi × 2i))10 = x
′
. (16)

x = 0 + x
′ × 10− 0

214 − 1
. (17)

For each generation, we choose the chromosomes with higher fitness value to generate the
next generation. In the selection process, we calculate each chromosome’s probability which
is in proportion to their fitness value. Then we calculate the cumulative probability. A num-
ber in [0, 1] is randomly generated. It will fall into a interval of the cumulative probability,
and the corresponding chromosome is selected.

In the crossover process, we use single-point crossover operation. There are two parent
chromosomes in Figure 2. We randomly generate a cross position colored bright yellow.
Then they exchange part of their chromosomes from the cross position to generate child
chromosomes. As shown in Figure 3, each child chromosome is formed by parts of two
parent chromosomes. In the mutation process, we randomly generate a mutation position
and flip the value(turn 0 into 1 or turn 1 into 0) on this position. The crossover operation
and the mutation operation are employed for increasing the population diversity so that
the search space is expanded. Both the crossover operation and the mutation operation
are operated with probabilities. Traditional Genetic Algorithm usually set the crossover
probability and the crossover probability as fixed values. However, recently they are always
set as dynamic for better satisfying the demand of the algorithm in different period. In our
research, the two probabilities are set as

Pc =

{
Pcmax − Pcmax−Pcmin

k
× kmax, fitl > fitave

Pcmax, f itl ≤ fitave
(18)

Pm =

{
Pmmax − Pmmax−Pmmin

k
× kmax, fit > fitave

Pmmax, f it ≤ fitave
(19)

where Pc and Pm are the crossover probability and the mutation probability, respectively;
Pcmax and Pcmin are the maximum value and the minimum value of the crossover proba-
bility; Pmmax and Pmmin are the maximum value and the minimum value of the mutation
probability; k is the current generation number; kmax is the maximum generation number;
fitl is the larger fitness value of two parent chromosome in the crossover operation; fit is
the fitness value of the chromosome in the mutation operation; fitave is the average fitness
value of current population.

The process of Genetic Algorithm used in this article is summarized below.

16



0 1 11 1 111 10 00

1

00

0 11 1 010 11 10 10

Figure 2: Parent chromosomes.

0 1

1

1 1

11

10

0

0

1 0

0

0

1

1 1

01

01

1

0

1

0

1

1

Figure 3: Child chromosomes.

Step 1: Initialize the population: determine the population size and the number of genera-
tions, randomly generate the initial populations X represented in binary codes.

Step 2: Calculate the fitness value of each individual Π(X). Update and record the best
fitness value and corresponding individual’s binary codes.

Step 3: Select a pair of individuals from initial population. The individual with a higher
fitness value could be chosen with a higher probability.

Step 4: Determine whether the crossover process will be conducted based on the crossover
probability. The crossover process is to randomly choose a site of binary codes and
to exchange parts of two selected individuals. Two new individuals are generated
after the crossover process.

Step 5: Determine whether the mutation process will be conducted based on the mutation
probability. The mutation process is to randomly choose a site of binary codes and
to flip the bit in this site: 0 to 1, 1 to 0.

Step 6: Back to Step 3 until the new population of specified size is generated.
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Step 7: Back to Step 2 until the number of generations is met.

4.3. Simulated Annealing

Simulated Annealing is a search method which is inspired by the physical annealing
process. Kirkpatrick et al. (1983) employed the idea for solving optimization problems, where
the objective function to be minimized corresponds to the internal energy of the metal. The
difference between SA and the general local search methods is that SA accepts poor solutions
with a small probability, rather than just selects the current best optimum solution into the
next iteration, which would be helpful for avoiding local optimum. Starting from a higher
temperature, the probability becomes lower with decreasing temperatures, and the solution
gradually becomes stable. A simulated annealing algorithm has been presented to solve a
location problem in Zarandi et al. (2013). We also develop a simulated annealing algorithm
to solve the customer classification based location model in this paper. The process of
Simulated Annealing used in this article is summarized below.

Step 1: Initialize the temperature T , the length of Markov chain L and initial solution
XCURRENT = (x, α).

Step 2: Generate new solution XNEW according to the iterative formula.

Step 3: Calculate fitness values of the current solution Π(XCURRENT ) and of the new solu-
tion Π(XNEW ).

Step 4: Calculate the difference ∆ between these two values. If Π(XNEW ) is higher than
Π(XCURRENT ), accept XNEW as XCURRENT ; otherwise accept XNEW with a prob-
ability: e−∆/T .

Step 5: For each temperature T , execute Step 2-4 L times.

Step 6: If the temperature T meets the the terminal condition, output XCURRENT ; otherwise
reduce the temperature T and back to Step 2.

4.4. Tabu Search

The concept of Tabu Search was first proposed by Glover in 1986 and formulated
in Glover (1989), and gradually developed into a mature algorithm. The main idea of
Tabu Search is to record some solutions that have been found so as to avoid re-visiting these
solutions and jump out the local optimum for the global optimum solution. Here, we also
design a Tabu Search algorithm to solve the customer classification based location model.
The process of Tabu Search used in this article is summarized below.

Step 1: Initialize the tabu list which is empty at first.

Step 2: Randomly generate a initial solution X = (x, α) and calculate its fitness value Π(X).
Assign X to the best solution XBEST and the current solution XCURRENT .

Step 3: Generate neighborhood solutions from neighborhood of the current solution. Cal-
culate their fitness values. Choose the solution which has the largest fitness value
as the candidate solution XCANDIDATE.
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Step 4: If the value of the candidate solution Π(XCANDIDATE) is lower than of the cur-
rent solution Π(XCURRENT ), assign XCANDIDATE to XCURRENT and update the
tabu list. If Π(XCANDIDATE) is higher than Π(XCURRENT ) and is higher than
Π(XBEST ), assign XCANDIDATE to XCURRENT and XBEST , and update the tabu
list. If Π(XCANDIDATE) is higher than Π(XCURRENT ) and is lower than Π(XBEST ),
judge if XCANDIDATE is in the tabu list; if not, assign XCANDIDATE to XCURRENT

and update the tabu list; otherwise apply XCURRENT regenerate neighborhood so-
lutions.

Step 5: If the terminal condition is met, stop searching and output XBEST , otherwise back
to Step 3.

5. Computational results

In this section, we conduct numerical experiments on the customer classification based
location model for comparing the performance of these four algorithms above in solving our
model and evaluating the influence of customer proportion on the location choice.

5.1. Comparison of algorithms

As described above, we have designed four kinds of heuristic algorithms to solve the
location model. The proposed algorithms were tested for a scenario where there are two
competitive chains in the region, which may have certain numbers of existing facilities, re-
spectively. Now one of the two chains is going to locate a new facility and determine the
quality of the facility for maximizing the profit of the chain. We generate location problems
with different settings, by varying the number of demand points n from 20 to 20000, and
the number of existing facilities m from 5 to 300. For the convenience of computing, we
randomly generate three possible customer proportions for each demand point. Then fuzzy
estimated market share of each demand points is calculated according to (8). Following the
parameter settings in Fernández et al. (2017a), G1(x) and G2(α) in the location model are
defined as

G1(x) =
n∑
i=1

wi
1

(di(x))φi0 + φi1
,

and

G2(α) = e
α
α0

+α1 − eα1 .

Parameters of the customer classification based location model are randomly chosen within
the following intervals in Table 4.

The following ranges of PSO’s parameters are tested according to the PSO literature:the
particle number in [5, 60], the acceleration coefficient in [1, 4], and the inertia coefficient in
[0.4, 1.2] (Rezaee Jordehi and Jasni, 2013). We employ PSO with different parameter settings
to solve the location problem in which the number of demand points is 5000, and the numbers
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Table 4: Parameters in the location problems.

fj pi ωi αij c η φi0 φi1 α0 α1

[0, 10]2 [0, 10]2 [1, 10] [0.5, 5] [1, 2] [2, 2] [2, 2] [0.5, 2] [7, 9] [4, 4.5]

of existing facilities belonging to two competitive chains are 20 and 30, respectively. The
optimal objective values obtained by PSO and the computing time (seconds) are shown in
Table 5. In order to ensure the reliability of the results, the algorithm with each setting
is operated 5 times. The maximum objective value and the average computing time of 5
times are recorded. The computing time is the time that the algorithm converges. The
results shows that PSO with different settings obtains close objective values. We set the
particle number, the acceleration coefficient and the inertia coefficient are 20, 2 and [0.4, 1]
respectively, and employ this setting in our subsequent experiments.

Table 5: Parameter selection tests results of PSO.

Particle number Acceleration coefficients Inertia coefficient Objective value Computing time

10 1 [0.4, 1] 60663.07 4.34

10 1 [0.4, 1.2] 60662.91 6.164

10 2 [0.4, 1] 60663.1 8.552

20 2 [0.4, 1] 60663.11 15.918

20 2 [0.6, 1] 60663.11 22.11

20 1 [0.4, 1] 60663.07 9.7275

40 2 [0.4, 1] 60663.11 19.69

We also refer to Arostegui Jr et al. (2006) to test the performance of GA, SA and TS
with different parameters. The results are shown in Table 6, 7, 8.

Table 6: Parameter selection tests results of GA.

Population

number
Crossover probability Mutation probability Objective value Computing time

10 [0.1, 0.9] [0.01, 0.09] 49773.95 0.46

20 [0.1, 0.9] [0.01, 0.09] 49908.87 1.61

20 [0.3, 0.9] [0.03, 0.09] 49998.23 2.92

20 [0.5, 0.9] [0.05, 0.09] 49466.14 5.20

40 [0.3, 0.9] [0.03, 0.09] 50091.18 7.58

60 [0.3, 0.9] [0.03, 0.09] 50160.35 15.32

80 [0.3, 0.9] [0.03, 0.09] 50272.08 22.18

100 [0.3, 0.9] [0.03, 0.09] 50101.61 52.23
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Table 7: Parameter selection tests results of SA.

Initial temperature
Temperature

decreasing rate

The length of

markov chain
Objective value Computing time

50 0.95 10 42918.58 11.14

70 0.95 10 43076.67 8.91

100 0.95 10 43623.24 12.06

100 0.98 10 43656.69 25.28

100 0.98 20 43670.34 60.03

150 0.98 20 43280.49 63.42

Table 8: Parameter selection tests results of Tabu.

Minimum Tabu list size Maximum Tabu list size Objective value Computing time

5 11 43271.52 15.48

5 15 43291.98 15.66

5 20 43292.93 14.98

10 20 43299.58 11.53

10 30 43278.82 6.37

15 20 60231.77 14.69

Based on experimental results, the parameters of these algorithms are set as Table 9.
Next we employ these four algorithms with parameters listed in Table 9 to solve the location
problems. We run these four algorithms in the personal computer environment: Intel i3-3420
CPU, 3.40 GHz, 4GB RAM and Windows 10 system.

To ensure the reliability of these four heuristic search algorithms, each algorithm for
each problem is operated 10 times. The average objective values and average computing
time (seconds) are recorded in Table 10. The first column lists the setting (n, jkmax) of each
problem. For example, The problem with setting of (50, (6,10)) means that in this problem
the number of demand pints is 50, and the numbers of existing facilities belonging to two
competing chains are 6, 4, respectively. The chain with 3 existing facilities is going to locate
a new facility. For each algorithm, two columns are listed recording the average objective
values and average computing time when solving corresponding problems, respectively. From
the results we get the following conclusions:

(1) For small size problems, the objective values employing four algorithms are almost equal.

(2) When the problem size becomes larger, the gaps between the objective values obtained
by GA and by other three algorithms are getting more significant.

(3) The objective value obtained by SA is closer to the value obtained by PSO, but the
computing time spent by employing SA is far longer than by employing PSO.

(4) For all the problems we have generated, PSO is the algorithm that always provides the
results of the best quality in the shortest time among these four algorithms.
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Table 9: Parameters in heuristic algorithms.

PSO Particle number Acceleration coefficients Inertia coefficient

20 2 [0.4, 1]

GA Population number Crossover probability Mutation probability

80 [0.3, 0.9] [0.03, 0.09]

SA Initial temperature Temperature decreasing rate The length of markov chain

100 0.98 20

TS Tabu list size

[15, 20]

Table 10: The computation results of location problems employing different algorithms.

Settings
PSO GA SA TS

Objective Time (s) Objective Time (s) Objective Time (s) Objective Time (s)

(20,(3,5)) 453.61 0.18 450.58 0.18 453.60 4.12 453.24 0.90

(50,(6,10)) 860.55 0.12 859.90 0.36 860.55 7.02 860.15 1.04

(100,(10,20)) 1903.33 0.17 1858.51 0.31 1903.31 11.65 1902.90 1.80

(1000,(20,50)) 11981.76 1.39 11969.17 4.98 11981.08 90.69 11980.08 17.20

(3000,(40,100)) 34921.86 10.60 34831.54 25.97 34918.39 698.60 34910.48 112.48

After observing the performance of these four algorithms in solving a set of location
problems we generated, we select the problem with setting of (3000, (40,100)) to analyze
the stability of these algorithms. The obtained maximum value, minimum value, average
value as well as the standard deviation of the objective value and the computing time of the
location problem with the setting of (3000, (40,100)) are recorded in Table 11. It clearly
shows PSO is superior to other three heuristics for the location problem we studied both
from the computing time and the solution quality two aspects. The standard deviation of
objective value obtained by PSO is 0.25, which indicates the robustness of PSO. The optimal
objective value obtained by SA is near to the value of PSO, however it’s standard deviation
is 513.15, which means SA’s performance is unstable. The objective value obtained by GA
and TS also have different degrees of fluctuation.

Table 11: Detailed computation results of a problem using different algorithms.

PSO GA SA TS

Objective Time (s) Objective Time (s) Objective Time (s) Objective Time (s)

Max 34921.86 13.21 34831.54 54.56 34918.39 704.73 34910.48 193.18

Min 34921.28 7.13 34433.56 3.57 33661.48 695.29 34855.88 39.97

Average 34921.72 10.60 34676.29 25.97 34286.49 698.60 34891.92 112.48

Standard deviation 0.25 2.22 138.24 16.62 513.15 4.34 18.75 53.98

Overall, PSO performs best in solving the location model we proposed. In addition,

22



PSO is able to handle large size problems. It is the most suitable algorithm to our problem
comprehensively considering the solution quality, algorithm stability and computation time.
In the following tests, we adopt PSO as the acceptable solution approach to solve the
customer classification based location model.

5.2. The influence of customer proportion

In this subsection, we study the influence of customer proportion on the location of the
new facility and on the profit obtained by the locating chain. We conduct the experiments
with fixed customer proportions and random customer proportions respectively to study the
influence of customer proportion.

For comparing the location results obtained by employing different customer proportions,
we consider following location strategies:

(1) Deterministic strategy: All the customers patronize facilities with the deterministic rule.
Based on this assumption locating chain makes the location decision.

(2) Probabilistic strategy: All the customers patronize facilities with the probabilistic rule.
Based on this assumption locating chain makes the location decision.

(3) Multi-deterministic strategy: All the customers patronize facilities with the multi-
deterministic rule. Based on this assumption locating chain makes the location decision.

(4) Comprehensive strategy: Different customers patronize facilities with different choice
rules. For each demand point, the market share is calculated based on the customer
proportion. The market share is estimated by real variables. Based on this assumption
locating chain makes the location decision.

(5) Fuzzy comprehensive strategy: Different customers patronize facilities with different
choice rules. For each demand point, the fuzzy market share is calculated based on
several possible customer proportions. The market share is estimated by fuzzy variables.
Based on this assumption locating chain makes the location decision.

We denote ΠD as the objective function of the location problem when the deterministic
strategy is employed, denote x∗D and α∗

D as the optimal location coordinates and quality of
the new facility found by PSO algorithm, denote ΠP , x∗P and α∗

P as the corresponding items
when the probabilistic strategy is employed, denote ΠM , x∗M , and α∗

M as the corresponding
items when the multi-deterministic strategy is employed, denote ΠC , x∗C , and α∗

C as the
corresponding items when the comprehensive strategy is employed, and denote ΠF , x∗F , and
α∗
F as the corresponding items when the fuzzy comprehensive strategy is employed.

In order to compare the location results obtained by using different customer proportions,
we compute the Euclidean distance between different location results and denote it by disl.
For example, dislDP represents the distance between x∗D and x∗P . Similarly, the difference
between the quality is computed and denoted by disq. Besides, the relative profit loss of
locating chain also needs to be computed when a wrong customer choice rule proportion is
applied. For instance, when we employ the optimal location results of assumption (4) in the
assumption (5), we compute the relative loss

loss(M |F ) = 100 ∗ (ΠF (x∗F , α
∗
F )− ΠF (x∗M , α

∗
M))/ΠF (x∗F , α

∗
F )
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to measure the loss of the locating chain caused by employing the wrong customer proportion.
We randomly generate 50 demand points and 10 existing facilities in the market area

which is a 10 × 10 square. For each demand point, 3 possible customer proportions are
generated. Fuzzy market share of each demand point is calculated based on customer pro-
portions.

For observing the results under various market situations, we assume several representa-
tive competitive market conditions.
Scenario 1 “newcomer 1”: k = 2 (number of chains), and the number of existing facilities

belonging to each chain is 0 and 10, respectively, which means that the locating
chain (chain 1) is a newcomer to the market and all the existing facilities belong
to another competing chain.

Scenario 2 “newcomer 2”: k = 3, and the number of existing facilities belonging to each
chain is 0, 4 and 6, respectively. Similarly, the locating facility has no existing
facility. But different with scenario “newcomer 1”, existing facilities belong to two
chains in this case. Competition exists before the new chain enter the market.

Scenario 3 “small chain”: k = 2, and the number of existing facilities belonging to each
chain is 3 and 7, respectively. The locating chain has 3 existing facilities.

Scenario 4 “large chain”: k = 2, and the number of existing facilities belonging to each chain
is 7 and 3, respectively. The locating chain has 7 existing facilities.

The location problems are solved by PSO algorithm introduced in Section 4.1. For each
test, we observe the convergence graph to make sure the algorithm is converged so the
optimal solution can be obtained. We find most tests converged in 100 generations, so we
set the default number of iteration generations as 100, and adjust the parameter depending
on the specific tests.

The results obtained are given in Tables 12, 13, and 14. From the Tables 12 and 13
we can see that the location results obtained by using different customer proportions show
differences in various degree. In our location problem, as a result of the limitation of decision
variables, the maximum value of the distance between different locations is

√
200 (approxi-

mately equal to 14.15), the maximum value of the difference between different quality level
is 4.5. In our numerical experiment, the maximum values of the two values are 5.88 and
1.24, respectively. As we can see, the customer proportion has a significant influence in
location results. Different customer proportions can lead to quite different location results.
Notice that when the market share is estimated by fuzzy variables, the location results also
have an obvious difference compared with other location results.

Table 14 displays the relative profit loss caused by employing wrong customer proportions
in the assumption (5). As we can see, the relative profit loss incurred for the chain when a
wrong customer proportion is employed can be quite large in some instances. The relative
profit loss is 12.76% when the locating chain wrongly assumes all the customers are the
multi-deterministic type in the Scenario 1 “newcomer 1”, which is a rather high profit loss
for the chain. In addition, we found that the relative profit loss in the Scenario 1 “newcomer
1” and Scenario 2 “newcomer 2” is higher than in the latter two scenarios.

As we have seen in this case study, the location results can be quite different by employing
different customer assumptions. The chain may lose large profit when a wrong customer
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Table 12: Differences of the new facility’s location caused by different customer assumptions.

Scenario distlDP distlDM distlDC distlDF distlPM

1 2.48 2.52 0.13 3.58 4.91

2 2.48 2.06 0.13 3.58 0.42

3 2.30 3.09 1.21 3.11 2.97

4 0.46 0.50 0.47 0.47 0.04

Scenario distlPC distlPF distlMC distlMF distlCF

1 2.52 5.88 2.44 1.12 3.49

2 2.52 5.88 2.11 5.50 3.49

3 1.37 2.99 3.40 0.02 3.42

4 0.01 0.01 0.03 0.03 0.00

Table 13: Differences of the new facility’s quality caused by different customer assumptions.

Scenario distqDP distqDM distqDC distqDF distqPM

1 0.09 0.09 0.09 0.09 0.00

2 0.09 0.09 0.09 0.09 0.00

3 1.02 1.02 1.02 1.02 0.00

4 1.24 1.24 1.24 1.24 0.00

Scenario distqPC distqPF distqMC distqMF distqCF

1 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

assumption is used. Considering that different customers may act with different customer
choice rules, a chain should investigate the proportion of customers using several kinds of
choice rules before locating a new chain in order to avoid high profit loss, especially for the
newcomer of the market.

6. Conclusions and future research

The main contribution of this paper is to develop a customer classification based com-
petitive facility location model to help finding a better location for the new facility and
improving the profit of the locating chain. First, customers were classified into three type-
s: the deterministic type, the probabilistic type and the multi-deterministic type. Then
a customer classification based facility location model in the plane was proposed in which
location and quality of the new facility are to be determined in order to maximize the profit
of the locating chain. Furthermore, we designed PSO algorithm to solve this model and
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Table 14: The relative profit loss caused by employing wrong customer assumptions in the assumption (5).

Scenario loss(D|F ) loss(P |F ) loss(M |F ) loss(C|F )

1 4.22 8.99 12.76 3.28

2 5.40 6.64 6.40 4.38

3 2.46 3.56 0.01 0.02

4 1.65 0.00 0.00 0.00

compared the performance of PSO with GA, SA, and TS. By comparison and analysis, PSO
showed its superior performance in solving our problem. A set of computational tests were
conducted to study the influence of customer proportion on location choice and to evaluate
profit loss of the locating chain when a wrong customer proportion is employed.

According to the computational results, the optimal location and optimal quality of
the new facility and the profit obtained by the locating chain varied greatly when different
customer proportions were employed. In our computational tests, the locating chain suffered
the profit loss of different extent when a wrong customer proportion was employed. The
maximum relative profit loss was 12.76%, which was a great loss to the chain. In many
cases the relative profit loss was over 5%. The employment of a wrong customer proportion
could bring a huge profit loss to the locating chain, especially for a newcomer. Hence the
customer proportion should be investigated before a facility is located.

Our work can be extended to the location problem on the network. The location problem
in the discrete location space can be formulated as an integer programming model and the
location results may also be different. The extension of our work to the case of the location
of multi-facilities also need to be discussed, which will add the computing complexity with
the increase of variables. Improving the precision of the algorithm that we used to solve the
location problem is also a main direction in our future research.
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