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Predicting Time to Upgrade for Successive Product Generations: An 

Exponential-Decay Proportional Hazard Model 

Abstract 

In the presence of successive product generations, most consumers are repeat buyers, who may decide to 

purchase a future product generation before its release. As a result, after the new product generation 

enters the market, its sales often exhibit a declining pattern, thus rendering traditional bell-shaped product 

life-cycle models unsuitable for characterizing consumers’ time to product upgrades. In this study, we 

propose an Exponential-Decay Proportional Hazard Model (Expo-Decay model) to predict consumers’ 

time to product upgrade. The Expo-Decay model is parsimonious and easy to interpret and performs 

better than or as well as existing models in prediction accuracy. We apply the Expo-Decay model as well 

as three extensions to study consumers’ upgrade behaviors for a sports video game series. Empirical 

results reveal that consumers’ previous adoption and usage patterns can help predict their timing to 

product upgrades. In particular, we find that (i) consumers who have adopted the immediate past product 

generation are more likely to upgrade; (ii) players who play previous generations more often tend to 

upgrade earlier; (iii) consumers who specialize in a small subset of game modes demonstrate a lower 

probability to upgrade. When comparing the Expo-Decay model and its extensions, we find that more 

complex model extensions do not lead to better prediction performance than the baseline Expo-Decay 

model, while a time-variant extension that updates the values of covariates over time outperforms the 

baseline Expo-Decay model with static data. 

Keywords: Predictive analytics, product upgrade, survival analysis, proportional hazard model 
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Predicting Time to Upgrade for Successive Product Generations: An 

Exponential-Decay Proportional Hazard Model 

1. Introduction  

Continuous product improvement and frequent releases of new product generations are a common 

practice by firms. Releasing improved product generations enhances consumer loyalty and encourages 

more repeat purchases (Albuquerque and Nevskaya 2012), thereby sustaining or increasing sales that 

otherwise would decline as a result of market saturation. For example, Call of Duty, the best-selling first-

person shooter video game series, releases new game generations every year to keep players engaged and 

safeguard its market dominance. Since the first introduction of iPhone in 2007, a new generation of 

iPhone has been released about once every year, mostly in the summer months, from 2008 to 2020. 

Similarly, Samsung introduced its first generation of Galaxy phones in 2009, and since then has been 

releasing multiple generations/models to the market every year in the last 10 years.1 In fact, continuous 

product improvement is so common that it is now difficult to find firms that do not release new product 

generations from time to time. 

As a product line matures and gains consumer loyalty, the market response to a new product 

generation typically differs substantially from that to the first product generation. Specifically, since the 

uncertainty about the quality and functionality of a new generation all but disappears, returning 

consumers no longer have the “wait and see” attitude toward a new generation. As a result, we often 

observe a sales growth curve that is drastically different from that of the first product generation—the rate 

of sales is at its highest level upon the release of a new generation, then gradually fades over time. For 

instance, on average, 17% of iPhone users upgrade as soon as a new model is released, 58% upgrade one 

year after the release, and 22% two years after the release; only 2% of users wait longer (Edwards 2016).  

                                                        
1 The product generation and release dates information for iPhone and Samsung Galaxy is available from 
https://en.wikipedia.org/wiki/IPhone and https://en.wikipedia.org/wiki/Samsung_Galaxy, respectively. 
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That being said, new product generations may not always be popular. If the quality improvement is 

marginal, consumers may be reluctant to upgrade to a new generation. For instance, in recent years, the 

average time-to-upgrade for smartphones has increased. In 2014, U.S. consumers are upgrading their 

smartphones every 23 months. Lately, consumers on average are holding onto their phones for eight more 

months. It is estimated that the time gap between upgrades would widen further in the coming years 

(Martin and FitzGerald 2018). Therefore, it is important to identify factors that might reveal existing 

users’ upgrade intentions. 

A limited number of prior studies have focused on factors that might impact consumers’ future 

purchases intentions for a new product series. To the best of our knowledge, no prior research has 

examined the association between consumers’ previous adoption and usage experience and their upgrade 

timing decisions. Furthermore, in the presence of successive product generations, most consumers are 

repeat buyers, who may decide to purchase a future product generation before its release. As a result, after 

the new product generation enters the market, its sales often exhibit a declining pattern, thus rendering 

traditional bell-shaped product life-cycle models unsuitable for characterizing consumers’ time to product 

upgrades. Motivated by this declining sales trend, the present study proposes an Exponential-Decay 

proportional hazard model (Expo-Decay model for short) to help explain and predict consumers’ upgrade 

behaviors. 

Using a rich dataset for a sports video game series that includes individual-level activation and 

usage records, we evaluate the proposed Expo-Decay model against existing survival models, and identify 

the key predictors of time-to-upgrade decisions. Our test shows that the Expo-Decay model performs 

better than or as well as existing models in prediction accuracy. Empirical results also confirm that 

players’ prior adoption and usage experience can indeed help predict their timing of product upgrade. In 

particular, we find that consumers who have adopted the immediate past generation are more likely to 

upgrade to a new generation, players who play previous generations more often tend to upgrade earlier, 

and consumers who specialize in a small subset of game modes demonstrate a lower probability to 

upgrade.  
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In addition to the baseline Expo-Decay model, we develop and test three extensions of the model: 

(i) a frailty model extension that incorporates unobservable consumer heterogeneity, (ii) a double Expo-

Decay extension that captures the influences of previous adoptions, and (iii) a time-variant extension that 

updates the values of covariates as time progresses. Further empirical tests using the video game dataset 

reveal that more complex model extensions do not lead to better prediction performance than the baseline 

Expo-Decay model, while a time-variant extension that updates the values of covariates over time 

outperforms the baseline Expo-Decay model with static data. 

In the next section, we review related prior literature, particularly on factors that drive consumers’ 

upgrade decisions. In Section 3, we propose the Expo-Decay model. Section 4 describes our video game 

dataset, experience-based covariates, and some model-free evidence. Empirical estimations and findings 

are presented in Section 5. In Section 6, we propose and test three model extensions. We conclude the 

paper in Section 7 with discussions on main contributions, managerial implications, and future research 

directions. 

2. Related Literature 

In this section, we review three streams of literature that are relevant to the present study, on (a) 

incentives of product adoptions and upgrades, (b) influence of consumers’ previous experience on product 

upgrade, and (c) duration models for product upgrade, respectively.  

2.1. Incentives of Product Upgrade 

In the diffusion of innovations literature, researchers have attempted to identify the influence of consumer 

characteristics on product upgrades. For instance, potential adopters’ income level, education, occupation, 

and experience with other related technical products are found to influence their upgrade propensity 

toward a new technology (Dickerson and Gentry, 1983). Psychologically, venturesome, impulsive, 

flexible, and inner-directed innovators are expected to be more open to technology upgrades (Huh and 

Kim 2008). 



 5 

In a multigeneration product series, characteristics of a new generation often create need arousal for 

upgrades. Van Nes and Cramer (2008) find that product characteristics, including technological 

performance, hedonic value, features and technological advantages, psychological value, ergonomics, 

economic value, and ecological benefit, may motivate consumers to upgrade to a new product generation. 

In addition, several moderators, such as promotional formats, usage frequency (Okada 2001), product 

similarity (Okada 2006), trade-in conditions (Purohit 1995), and transaction conditions (Zhu et al. 2008), 

may influence consumers’ upgrades decisions.  

It is important to note that, in identifying factors that drive consumers’ upgrade decisions, prior 

studies in this research stream have focused on consumers’ perception of the features of a new product 

(generation) and a firm’s marketing effort, while ignoring consumers’ purchases and usages of previous 

product generations. This study fills this void and utilizes consumers’ past experience to predict their 

future upgrade decisions.  

2.2. Consumer Experience and Upgrade Decisions 

Aside from characteristics of technology improvements and consumers’ demographic and psychographic 

factors, consumers’ experience with related technologies are found to impact their upgrade decisions (Dee 

Dickerson and Gentry 1983). Based on factors identified in the prior literature, Kim et al. (2001) find that 

previous adoption history and post-adoption behavior toward current products are more robust predictors 

of upgrade decisions. Similarly, Shih and Venkatesh (2004) point out two perspectives for innovation 

diffusion studies: an adoption-diffusion perspective, which examines the process through which a target 

population adopts an innovation, and a usage-diffusion perspective, which aims to identify the usage 

behavior associated with an innovative product. Adopting the two perspectives, we examine how 

consumers’ past adoption and usage experience can help predict their time-to-upgrade decisions. 

With the help of modern data collection and storage technologies, consumers’ previous adoption 

experience has become more available than ever before. Rijnsoever and Oppewal (2012) show that 

variables associated with previous adoptions outperform conventional socio-demographic and 
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psychographic variables in helping predict early adoptions. Prior studies have shown that successful 

adoption experience with previous product generations may improve the expected benefits of an entire 

product series, therefore reducing resistance against similar technologies (Shih and Venkatesh 2004, 

Chang et al. 2005). Conversely, researchers have also found that prior adoption experience could also 

hinder the adoption of a new generation. For instance, some studies find that a consumer’s motivation to 

upgrade likely decreases if the version she has already adopted can fulfill her needs (Ellen et al. 1991, 

Gerlach et al. 2014). Further, consumers who like certain attributes of existing products might even 

negatively react to a substitute that differs on those attributes (Ellen et al. 1991).  

In addition to previous adoption experience, consumers’ previous usage experience can help gain 

insight into their upgrade decisions. Sääksjärvi and Lampinen (2005) first study how usage experience 

with a previous product generation plays a role in affecting the perceived risk of adopting a successive 

generation. Shih and Venkatesh (2004) conceptualize innovation usage with two distinct dimensions, 

variety of use and rate of use, resulting in four distinct usage patterns: intense, specialized, 

nonspecialized, and limited. They suggest that users demonstrating a higher usage patterns are more open 

to future technologies compared to users exhibiting a lower usage pattern. 

Despite the rich literature in this space, there is a clear need for better understanding of the 

influence of prior product usage experience on future upgrade decisions. We believe that this void is at 

least partially attributed to a lack of relevant data—consumers’ product usage records are typically not 

observable to analysts or researchers. Armed with a rich dataset that records adoptions as well as usages 

of a sports video game series, the present research aims to analyze consumers’ product adoption and 

usage behaviors and how such behaviors can help predict their product upgrade decisions.  

2.3. Time-to-Upgrade Models 

Some prior studies have attempted to model the timing of repeat purchases. Drawing on the stochastic 

counting and timing literature, researchers have developed models of repeat purchase behaviors that 

utilize data from firms’ transaction databases for model training and development. In particular, the 
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negative binomial distribution (NBD) model is found to provide an excellent fit to repeat purchase data 

(Ehrenberg et al. 2004), which assumes that the number of purchases made by a consumer in a given time 

period can be characterized by a Poisson distribution with the buying rate following a gamma distribution.  

Only a few of the prior studies have modeled the purchase timing of high-tech product upgrades, 

among which the survival model, specifically the proportional hazard model, is the most widely applied. 

Kim and Srinivasan (2009) propose a conjoint utility model with a hazard function specification to 

examine the upgrade timing of PDAs. Extending the conventional duration model, Sinha and 

Chandrashekaran (1992) first develop a split hazard model to analyze the diffusion of innovations, in 

which the splitting model indicates whether a consumer will eventually adopt the product while the 

hazard part models the distribution of the time to adoption. Prins and Verhoef (2007) apply the split 

hazard model to study the effect of marketing communication on existing consumers’ adoption timing of 

a new E-service.  

In this study, following the survival analysis framework, we develop an efficient and parsimonious 

proportional hazard model to study how existing consumers’ adoptions and usage experience can help 

predict their timing of product upgrades. Based on the baseline model, we also propose and test several 

extension models that capture unobservable consumer heterogeneity, consumers’ complete adoption 

history, and time-variant covariates.  

3. Time-to-Upgrade Model Development 

Firms often release successive product generations based on a predetermined schedule. For instance, new 

generations of the video game Call of Duty are usually released in late October or early November every 

year. The present study focuses on this type of product series, for which the product series have 

accumulated some consumer base and the release dates of past and future generations are considered 

public knowledge.  

As illustrated in Figure 1, at around the same time each year, the focal firm releases an improved 

generation of its product series. Consumers may or may not upgrade to the newest generation every year. 
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For example, the consumer illustrated in Figure 1 adopted the first generation (G1) t1 days after its 

release, but did not upgrade after the second generation (G2) became available. Now, after the third 

generation (G3) is launched, the consumer decides whether to upgrade to G3, or continue to use G1 and 

wait for a further improved future generation.  

 

Figure 1. An Illustrative Example of Cross-Generation Adoptions  

Based on the theoretical discussions in the previous section, the time to upgrade to a new generation 

depends on many drivers. In this study, we focus on factors that reflect consumers’ previous adoption 

behaviors and usage patterns. In this section, we briefly review the survival analysis method and then 

propose a new proportional hazard model to examine how consumers’ past experience can be used to 

understand and predict their timing of upgrade purchases. 

3.1. Proportional Hazard Model 

It is important to note that common prediction models in machine learning, such as classifiers (e.g., 

logistic regression) and numerical prediction models (e.g., linear regression) are not suitable for 

predicting the time to an event. An appropriate choice for our task is survival models, which can predict 

the probability density of time to event, and can effectively address the issue of right-censored data 

(Helsen and Schmittlein 1993). 

Release of G1 Release of G2 Release of G3 

 

End of Observation Window 

Adopt G1 

Adopt G3 

Censored for G2 

Experience with G1 

t
1
 

t
2
 

t
3
 

Time-to-Upgrade 
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Time-to-event survival analysis has been widely applied in business research. For instance, 

researchers have employed survival models to study the time duration between consumers’ repeat 

purchases (Jain and Vilcassim 1991, Seetharaman and Chintagunta 2003), and to predict the propensity, 

frequency, and timing of readmissions of patients (Bardhan et al. 2014).  

In this study, we apply a proportional hazard model (PHM) specification (Cox 1972) to explain and 

predict consumers’ time-to-upgrade decisions, because PHMs can capture the influence of covariates of 

interest and provide better interpretability than alternatives. The baseline hazard rate, defined as the 

(instantaneous) probability of upgrade during an infinitely small time-interval (𝑡, 𝑡 + ∆𝑡) conditional on 

no upgrade having occurred before time t, is 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡<𝑇<𝑡+∆𝑡|𝑇>𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
=

𝑓(𝑡)

1−𝐹(𝑡)
 , 

where 𝑓(𝑡) and 𝐹(𝑡) are the probability density function and cumulative distribution function of the 

upgrade timing, respectively. The survival function 𝑆(𝑡) represents the probability that there is no 

upgrade before time t. A survival process can be characterized by the hazard function, the probability 

density function, or the survival function.  

The covariates of interest can be incorporated into the baseline hazard rate to generate the 

consumer-specific hazard rate: 

ℎ(𝑡, 𝑋𝑖) = ℎ0(𝑡)𝑒𝑋𝑖
′𝜷,                (1) 

in which ℎ0(𝑡) is the baseline upgrade hazard, 𝑋𝑖 is a vector of covariates representing consumer i's 

previous adoption and usage experience, and the coefficient vector 𝛽 captures the relationship between 

these covariates and the time-to-upgrade. Incorporating these experience-related covariates, the survival 

function becomes  

𝑆(𝑡, 𝑋𝑖) = [𝑆0(𝑡)]exp (𝑋𝑖
′∙𝛽),     (2) 

in which the baseline survival function, 𝑆0(𝑡), can be derived from the baseline hazard function 𝑆0(𝑡) =

𝑒− ∫ ℎ0(𝑢)
𝑡

0 𝑑𝑢. The probability density function of time-to-upgrade takes the form:  

𝑓(𝑡, 𝑋𝑖) = ℎ0(𝑡)𝑒𝑋𝑖
′𝛽[𝑆0(𝑡)]exp (𝑋𝑖

′∙𝛽).    (3) 
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3.2. Common Baseline Hazard Functions 

In a PHM, ℎ0(𝑡) describes how the upgrade hazard rate changes over time in the absence of influences 

from related covariates. It is not always necessary to explicitly specify a baseline hazard function in 

survival analysis. For instance, a well-known semi-parameter model, the Cox model, does not need a 

baseline hazard function.  

Table 1. Parametric Baseline Hazard Functions 

 Exponential Weibull Erlang-2 Box-Cox Expo-Power 

𝒉𝟎(𝒕) 𝛾 𝛾𝛼(𝛾𝑡)𝛼−1 
𝛾2𝑡

1 + 𝛾𝑡
 exp [𝛾0 + ∑ 𝛾𝑘 (

𝑡𝜆𝑘 − 1

𝜆𝑘

)

𝐾

𝑘=1

] 𝛾𝛼𝑡𝛼−1𝑒𝜃𝑡𝛼
 

𝑺𝟎(𝒕) 𝑒−𝛾𝑡 𝑒−(𝛾𝑡)𝛼
 (1 + 𝛾𝑡)𝑒−𝛾𝑡 -- 𝑒

𝛾
𝜃

[1−𝑒𝜃𝑡𝛼
]
 

Shape of 

Baseline 

Hazard 
Flat 

Flat, 

monotonically 

increasing, 

monotonically 

decreasing 

Monotonically 

increasing 

Flat, monotonically 

increasing, monotonically 

decreasing, U-shaped, or 

inverted U-shaped 

Flat, monotonically 

increasing, 

monotonically 

decreasing, U-shaped, 

or inverted U-shaped 

 

For parametric PHMs, there are a few widely applied baseline hazard specifications, including 

Exponential, Weibull, Erlang-2, and Expo-Power. Their underlying hazard functions and survival 

functions are summarized in Table 1. The exponential hazard assumes a constant hazard rate, which is a 

special case of the Weibull hazard. The Weibull hazard can capture constant, monotonically increasing, 

and monotonically decreasing hazard rates, and is the most widely applied in the PHM literature. The 

Erlang-2 hazard has a monotonically increasing shape and has been used in estimating consumers’ inter-

purchase time distributions (e.g. Seetharaman 2004). In a comparison study, Seetharaman and 

Chintagunta (2003) review different specifications of PHM and find that the flexible Expo-Power 

specification fits data the best. In another study, Jain and Vilcassim (1991) show that most probability 

distributions suggested in marketing literature can be nested within the Box-Cox formulation. In this 

study, the widely applied Weibull model, the most flexible Expo-Power model, as well as the Box-Cox 
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model are selected as benchmarks. With respect to the Box-Cox formulation, we apply a restricted 

version of the general model in empirical validation, in which K=3, and the baseline function is 

ℎ0(𝑡) = exp [𝛾0 + 𝛾1 (
𝑡𝜆1 − 1

𝜆1
) + 𝛾2 (

𝑡𝜆2 − 1

𝜆2
) + 𝛾3 (

𝑡𝜆3 − 1

𝜆3
)]. 

𝛾0 , 𝛾𝑘 , 𝜆𝑘 (𝑘 ∈ {, 1,2,3} are parameters to be estimated and t is the time to upgrade. Following Jain and 

Vilcassim (1991), in this restricted model, we fix 𝜆1 = 1, 𝜆2 → 0, and 𝜆3 = 2.  The baseline function that 

can be used as the general Box-Cox in estimation thus reduces to: 

ℎ0(𝑡) = exp[𝛾2 𝑙𝑛(𝑡)] ∗ exp [
𝛾3

2
𝑡2 + 𝛾1𝑡 + 𝛾0 − 𝛾1 −

𝛾3

2
].   (4) 

3.3. Pre-release Adoption  

Prior to the release of a new product generation, companies often advertise it through various channels. For 

instance, official trailers of a new video game generation may be posted on Youtube.com months before its 

release date, and short demo-version games can be made available for download on platforms a few weeks 

before the game launch date. More importantly, existing consumers, which often account for the majority 

of adopters of a new generation, could be aware of an upcoming new generation even if they are not exposed 

to such advertisements. As a result, most potential consumers of an upcoming product generation may be 

well informed of the time frame of the release of the new generation, and have reasonable prior expectations 

about the quality of new product generation.  

Due to the pre-release product awareness and diffusion of information, potential consumers who 

anticipate a forthcoming new product generation may commit to buy it prior to its release.  In fact, empirical 

evidence shows that the pre-release word-of-mouth (WOM) dynamics can serve as early indicators of future 

product sales, and products with more pre-release WOM tend to have higher initial sales (Gelper et al. 

2014). Hence, consumers’ upgrade decisions might have been made before the release of the new product 

generation, which we refer to as virtual adoptions in the rest of the discussion.  

Despite the pre-release virtual adoptions, actual sales or activations can only take place after the release 

of a new product generation. Upon its release, most accumulated virtual adopters would purchase the new 
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product generation they’ve been waiting for in a short time-frame following the product launch, as 

evidenced by the scene of long waiting lines following the release of a new iPhone generation. As a result, 

the hazard rate is the highest at the very beginning of the product sales window. As more and more virtual 

adopters as well as enthusiasts have made their upgrade purchases, the (instantaneous) probability of 

upgrading by the remaining consumers tends to decrease over time, leading to a declining hazard rate. This 

declining hazard rate renders the traditional product lifecycle models and the associated bell-shaped growth 

curve unsuitable for modeling the upgrade sales of a new product generation. To address this problem, the 

present research proposes a parsimonious and flexible baseline hazard function to capture the declining 

upgrade hazard rate of a new product generation.  

3.4. The Exponential-Decay Proportional Hazard Model 

Based on our extensive literature review, most existing diffusion models and time-to-purchase models 

proposed in the prior literature cannot effectively capture a declining hazard trend. For instance, the hazard 

function of the classic Bass model (Bass 1969) is monotonically increasing with time. The parsimonious 

BOXMOD-I framework proposed by Sawhney and Eliashberg (1996), which is a generalization of 

Exponential, Erlang-2, and Generalized-Gamma distributions, characterizes a non-decreasing baseline 

hazard function. Therefore, it is imperative to develop a model that could effectively capture the declining 

hazard trend. In this study, we propose a parsimonious baseline hazard function, which we name as 

Exponential Decay (Expo-Decay) baseline hazard function, as follows: 

ℎ0(𝑡) = 𝛾 ∗ 𝑒−𝛼𝑡, 𝛼, 𝛾 > 0.                                             (5) 

The associated survival function is  

𝑆0(𝑡) = 𝑒(
𝛾

𝛼
)∗(𝑒−𝛼𝑡−1)

.       (6) 

We refer to 𝛾 in the Expo-Decay function as the scale parameter, and 𝛼 as the decay rate parameter. 

Although theoretically the Expo-Decay function can capture flat, increasing, or decreasing hazard rates, 

we are only interested in the declining curve it provides, hence we have 𝛼, 𝛾 > 0. In the remaining 
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discussion, we refer to this survival model as the Exponential Decay Proportional Hazard model or 

simply the Expo-Decay model.  

Compared with alternative baseline hazard functions, the Expo-Decay model has two important 

advantages. First, the Expo-Decay function requires only two parameters, and has as parsimonious a form 

as the widely applied Weibull function, and simpler than the Expo-Power function and the Box-Cox 

formulation. Second, the Expo-Decay has better interpretability than other specifications. Specifically, the 

scale parameter (𝛾) helps capture the magnitude of willingness to upgrade right after the release of the 

new generation, and the decay rate parameter (𝛼) reflects how quickly the hazard rate declines over time. 

Third, the parsimonious and interpretable form of the Expo-Decay model makes it more likely to be 

adopted and extended in future empirical and analytical research, and be applied in practice. The 

advantages of a simple and interpretable model can hardly be overstated and is well documented in 

related disciplines.2  

Although the hazard rate ℎ(𝑡, 𝑋𝑖) is a continuous-time function, observable data is typically in 

discrete form. Therefore, based on the continuous model, we define a discrete upgrade hazard rate for 

consumer i during time interval j, (𝑡𝑗−1 , 𝑡𝑗] as 

𝜆(𝑗, 𝑋𝑖) = 𝑃𝑟𝑜𝑏{𝑇𝑖 ≤ 𝑡𝑗|𝑇𝑖 > 𝑡𝑗−1} = 1 − 𝑒−[𝐻(𝑡𝑗,𝑋𝑖)−𝐻(𝑡𝑗−1,𝑋𝑖)],    (7) 

where 𝐻(𝑡𝑗 , 𝑋𝑖) is the cumulative hazard function, i.e., 𝐻(𝑡𝑗, 𝑋𝑖) = ∫ ℎ(𝑢, 𝑋𝑖)
𝑡

0
𝑑𝑢. The discrete hazard 

rate 𝜆(𝑗, 𝑋𝑖) represents the probability that consumer i will upgrade during the jth interval given she has 

not upgraded before 𝑡𝑗−1. The discrete survival function for time interval j, (𝑡𝑗−1 , 𝑡𝑗], is: 

𝑆(𝑡𝑗|𝑋𝑖) = exp {− ∫ ℎ(𝜏|𝑋𝑖)
𝑡𝑗

0
𝑑𝜏} = 𝑒−𝐻(𝑡𝑗,𝑋𝑖).     (8) 

In general, if consumer i does not upgrade in the observation window of a dataset (right censored), 

the likelihood is the probability of survival till the end of the observation window: 𝐿𝑖 = 𝑆(𝑡𝐷 , 𝑋𝑖), where 

𝑡𝐷 denotes the last observed time interval. When consumer i upgrades during time interval 𝜏𝑖, the 

                                                        
2 Take the product diffusion models in marketing as an example—although there are numerous extensions to the seminal Bass 
(1969) Model, the simpler Bass Model remains the most well-known and most cited diffusion model to date (Rogers 2003). 
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likelihood is the probability that consumer i has survived till the end of time interval 𝜏𝑖−1 multiplied by 

the upgrade hazard rate during (𝑡𝜏𝑖−1
, 𝑡𝜏𝑖

], i.e., 𝐿𝑖 = 𝑆(𝑡𝜏𝑖−1, 𝑋𝑖) ∗ 𝜆(𝜏𝑖 , 𝑋𝑖  ). Therefore, the joint 

likelihood function for all consumers in a data sample is 

𝐿 = ∏ 𝐿𝑖
𝑁
𝑖=1 = ∏ [𝑆(𝑡𝜏𝑖−1, 𝑋𝑖) ∗ 𝜆(𝜏𝑖 , 𝑋𝑖  )]

𝛿𝑖[𝑆(𝑡𝐷 , 𝑋𝑖)]1−𝛿𝑖𝑁
𝑖=1 .  (9) 

where 𝛿𝑖 is a binary indicator of the upgrade status of consumer i. From Eq. (9), we can use the Maximum 

Likelihood Estimation (MLE) method to estimate the model parameters.  

Since the present study examines the upgrade decisions of existing consumers in a setting 

influenced by pre-release virtual adoptions, we only compare the Expo-Decay model with ones that can 

capture a declining hazard trend, i.e. Weibull, Box-Cox, and Expo-Power specifications, in our 

performance evaluations. Details about the empirical analysis are provided in Section 5. 

4. Data Description 

We apply the Expo-Decay model to study consumers’ upgrade behaviors for a major sports video game 

series produced in North America. The game is mainly played on gaming consoles such as PlayStation 

and Xbox. The publisher of the game releases a new generation in the same month every year. For 

simplicity, the game generation is labeled based on its release year. For instance, the generation released 

in 2011 is labeled as G-11. 

4.1. Data Sample 

The dataset we use includes transactional records of product activations, which is used to approximate 

sales, game playing sessions, and in-game purchases by game console players, which enable us to 

investigate consumers’ product adoption, usage, and upgrading behaviors from multiple perspectives.  

Players’ activations are recorded for generations G-10 through G-16. The video game can be 

purchased from a brick-and-mortar store or online through a game console. For each generation, ten 

thousand unique players are sampled based on activation records, resulting in more than 60,000 unique 

players being tracked across multiple generations of the game series. However, game playing session 
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records are only available for G-12 through G-16, and in-game enhancement purchases are collected for 

G-11 through G-16. To examine the impacts of previous experience (i.e. adoption and usage) on players’ 

future upgrades, we can only utilize playing session records and in-game purchases data starting from G-

12 to explain upgrades starting from G-13. In the empirical analysis, we focus on upgrade purchases of G-

15; therefore, a sample of 34,584 unique players who have active usage and activation records before the 

release of G-15 are selected in the data sample we use for empirical testing.  

4.2. Variable Description/Measures 

To understand how consumers’ experience impacts their upgrade decisions, we summarize consumers’ 

past adoption and usage experience by extracting related covariates from transaction records. The 

summary statistics of these covariates are provided in Table 2. 

Table 2. Measurements and Descriptions of Explanatory Variables 

Variable Label Mean SD Min Max 

Past Adoption Experience 

Number of generations activated by the consumer NumGens 1.51 0.74 1 3 

Time interval between release dates and activation 

dates for adopted generations 
WaitDays 167.55 191.38 -11 1096 

Whether the consumer has activated the immediate 

past generation 
Switch 0.51 0.50 0 1 

Past Usage Experience 

Number of game sessions the consumer has played NumSess 36.90 68.60 1 1920 

Number of game modes the consumer has played NumModes 4.49 3.47 1 25 

Gini coefficient of the allocation of time spent on 

different game modes 
GiniIndex 0.90 0.06 0.56 0.97 

Number of in-games enhancement purchases a 

consumer has made 
EnhancePurchase 2.12 19.47 0 1494 

Time interval between a consumer’s latest game 

session and the release date 
RecentActDay 304.08 282.56 0 1019 

 

Since early adopters of previous generations tend to upgrade earlier (Huh and Kim 2008), we use 

WaitDays to denote how long a consumer waited after product release to activate the game generation she 
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is currently using. Loyal consumers are usually more willing to make future purchases, so we count the 

number of product generations (NumGens) a consumer has previously adopted. The dummy variable 

Switch indicates whether a consumer is a potential switcher—those who have adopted the immediate past 

generation in the game series, or a potential leapfrogger—those who have adopted one or more earlier 

generations but not the most recent one. 

Players’ game usage experience is summarized following the rate of use and variety of use 

perspectives. Specifically, the number of game sessions a player has played (NumSess) is counted to 

measure the rate of use. Two variables are generated to capture the variety of use: NumModes, the number 

of game modes a consumer has played, and GiniIndex, the Gini coefficient of the allocation of time 

among different game modes. Players with high GiniIndex values spend most of the gaming time on a 

limited number of game modes. The GiniIndex approaches 0 when the player allocates time evenly across 

all game modes. Other usage related variables, such as EnhancePurchase and RecentActDay, are also 

included. EnhancePurchase counts how many in-game enhancement purchases a player has made in one 

game generation. Since enhancement packs purchased in one generation cannot be applied in other game 

generations, enhancement purchases may imply sunk costs and switching costs, hence impacting players’ 

upgrade decisions. RecentActDay is defined as the time interval between a consumer’s latest game session 

date and the release date of a new generation. Recently active players are expected to have a fresh 

memory about the game features and show higher willingness to upgrade.  

In general, existing players demonstrating active usage patterns are expected to be more open to 

future technologies. In other words, a consumer who has started a larger number of game sessions, played 

more game modes, made more enhancement purchases, and played the game more recently is expected to 

demonstrate a higher probability of upgrading. 

To rule out the multicollinearity concerns, the variance inflation factor (VIF) (Kutner et al. 2004) 

analysis is conducted for these intrinsic experience-based variables. The results in Table 3 show all VIF 

values are below 10, and the high value for NumModes reflects its high correlation with GiniIndex. 
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Therefore, we remove NumModes from our empirical model; all VIF values become quite low after the 

deletion, thus eliminating potential concerns regarding multicollinearity.  

Table 3. VIF Values for Multicollinearity Check 

Variables VIF VIF Revised 

NumGens 1.48 1.47 

WaitDays 1.97 1.72 

Switch 2.76 2.66 

NumSess 2.29 1.48 

NumModes 7.83 −−−− 

GiniIndex 4.61 1.12 

EnhancePurchase 1.10 1.10 

RecentActDay 3.02 2.54 

4.3. Model-Free Evidence 

Figure 2 shows how the composition of sales for the video game series changes from generation to 

generation during the data observation window. In this figure, n-G leapfrog captures players who skipped 

n generations in the middle before activating the focal generation. Due to data truncation problem, the 

new and others in Figure 2 include new adopters and leapfroggers who have skipped more generations 

than we could track. The 1-G and 2-G leapfrogs can be identified but they only account for a small 

proportion (around 7% to 10%) of sales. It is worth noting that among all identifiable consumers, 

switching players, those who upgraded from the immediate past generation, account for the largest 

proportion of purchases. 

 

Figure 2. Composition of Sales for Each Game Generation 
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Before specifying any baseline hazard function, we apply the Kaplan-Meier method to estimate the 

upgrade hazard rate (Figure 3-a). Model-free estimations show that in the first month after release and, to 

a less extent, the holiday season, existing consumers are more likely to upgrade. The upgrade hazard rate 

decreases over time and drops close to 0 one year from the date of release (Figure 3-a), after which a 

newer generation is released.  

        

                                          (a)                                                                              (b) 

Figure 3. Kaplan-Meier Estimation of Hazard Rate and Survival Function 

We also compare the survival probabilities of leapfroggers and switchers using three methods, 

Kaplan-Meier, Cox, and Weibull. As shown in Figure 3-b, switchers have a lower survival probability, or 

equivalently, a higher hazard rate under all three models. This implies that switchers, who have bought 

the immediate past generation, tend to upgrade to the new generation earlier. On average, it takes all 

existing consumers around 3.9 months to upgrade to a new generation. For switching consumers, it takes 

2.46 months to upgrade, while for leapfrogging consumers, upgrades can take 4.92 months on average. 

This result might be counterintuitive to some, but is consistent with theoretical and empirical findings of 

the prior literature (Jiang and Jain 2012). In our empirical analysis, the difference between switching and 

leapfrogging consumers is modeled through the Switch dummy variable. 

5. Empirical Evaluations 

In this section, we use the game adoption and usage data described in the previous section to (i) examine 

whether consumers’ past adoption and usage experience can help explain consumers’ time to upgrade to a 
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new game generation, and (ii) evaluate the prediction performance of the Expo-Decay model in relation to 

benchmark models.  

5.1. Model Estimation and Behavioral Explanations 

We estimate the proportional hazard models with different specifications. Two dummy variables, 

corresponding to the first month after release and the holiday month, respectively, are included to capture 

the abnormalities.3 The estimation results are summarized in Table 4. From this table, we can see that the 

results produced by the six compared models are quite consistent—they all show that all intrinsic 

experience-based variables have significant associations with existing players’ time to upgrade decisions. 

In terms of model fitting, as measured by the Bayesian Information Criterial (BIC), the proposed Expo-

Decay model fits the data the best among all methods. The superior model fitting performance, coupled 

with the fact that it is the most parsimonious and interpretable among comparable models, makes Expo-

Decay the model of choice in our subsequent exploration.  

We first take a look at consumers’ propensity to product upgrade. The scale parameter (𝛾) 

represents the initial upgrade hazard rate at the release date. Based on the definition of the Expo-Decay 

model in Eq. (5), when the new product generation is released (t=0), the instantaneous initial upgrade 

probability ℎ(𝑡 = 0) = 𝛾 = 0.1292, or around 13%. The positive decay rate (𝛼) reflects a declining 

upgrade hazard trend, according to which the upgrade hazard decreases by 15.5% after waiting for an 

additional month.4  

We next examine how consumers’ past adoption and usage experience can help predict their time to 

product upgrades. Note that although the absolute values of estimated coefficients vary due to different 

model specifications, the signs of coefficients and significance levels are highly consistent. The results in 

Table 4 confirms that consumers’ previous adoptions are indeed significant predictors of their future 

upgrade decisions. Specifically, the positive coefficient for NumGens suggests that, for consumers who 

                                                        
3 Specifications with no dummy variable or either one of the dummy variables have also been tested and the results are 
quantitatively consistent. 
4 The declining rate is calculated as 

ℎ(𝑡)−ℎ(𝑡−1)

ℎ(𝑡−1)
= 𝑒−𝛼 − 1 =  −0.155. 
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have adopted one more generation in the game series, their hazard rates to upgrade at any given point in 

time increase by a factor of exp(𝛽𝑁𝑢𝑚𝐺𝑒𝑚𝑠) = 𝑒0.4479  = 1.565 or by 56.5% on average. The negative 

influence of WaitDays (-0.0015) is also consistent with the literature—early adopters tend to upgrade 

earlier. Furthermore, the positive coefficient for Switch (0.3329) confirms that potential switching 

consumers, those who have adopted the immediate past generation, are about 40% (𝑒0.3329 = 1.395) more 

likely to upgrade compared to potential leapfrogging consumers, i.e., those who did not purchase the 

immediate past generation. These results suggest that consumers who spend more on previous game 

generations also tend to upgrade earlier; intuitively, they represent the group of loyal customers and 

bigger spenders. 

Table 4. Estimation Results of Different Proportional Hazard Models  

 Cox  Weibull Expo-Power 
Restricted 

Box-Cox 
Expo-Decay 

Covariates 
Coefficient 

(Std.) 

Coefficient 

(Std.) 

Coefficient 

(Std.) 

Coefficient 

(Std.) 

Coefficient 

(Std.) 

NumGens 
0.4352 

(0.0142) *** 
0.4565 

(0.0141) *** 
0.4483 

(0.0143) *** 
0.4483 

(0.0146) ***   
0.4479 

(0.0143) *** 

WaitDays 
-0.0016 

(0.0001) *** 
-0.0015 

(0.0001) *** 
-0.0015 

(0.0001) *** 
  -0.0015 

(0.0001) ***   
-0.0015 

(0.0001) *** 

Switch 
0.3066 

(0.0328) *** 
0.3379 

(0.0335) *** 
0.3330 

(0.0143) *** 
0.3330   

(0.0334) ***                
0.3329 

(0.0333) *** 

NumSess 
0.0016 

(0.0001) *** 
0.0026 

(0.0001) *** 
0.0025 

(0.0001) *** 
0.0025  

(0.0001) ***               
0.0025 

(0.0001) *** 

GiniIndex 
-1.4165 

(0.1738) *** 
-0.9374 

(0.1373) *** 
   -1.3642 

(0.1895) *** 
-1.3646    

(0.2056) ***              
  -1.3632 

(0.1740) *** 

EnhancePurchase 
0.0012 

(0.0003) *** 
0.0016 

(0.0003) *** 
0.0017 

(0.0003) *** 
0.0017  

(0.0003) ***              
0.0017 

(0.0003) *** 

RecentActDay 
-0.0028 

(0.0001) *** 
-0.0026 

(0.0001) *** 
-0.0027 

 (0.0001) *** 
-0.0027   

(0.0001) ***                
-0.0027 

 (0.0001) *** 

𝛼 −− 
0.1119 

(0.0116) *** 

1.0744 

(0.0317) *** 
−− 

0.1687 

(0.0039) *** 

𝛾 −− 
0.7649 

(0.2841) ** 
0.1077 

(0.0206) *** 
−− 

0.1292 
(0.0211) *** 

𝜃 −− −− 
-0.1443 

(0.0102) *** 
−− −− 

𝛾0 −− −− −− 
-2.3222     

(0.2015) ***            
−− 

𝛾1  −− −− −− 
-0.1932    

(0.0506) ***               
−− 

𝛾2 −− −− −− 
0.1563     

(0.1494)              
−− 

𝛾3 −− −− −− 
-0.00003 
(0.0032)   

−− 

BIC 186796.9 56672.71 56320.72 56330.44 56315.81 
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Regarding consumers’ past usage experience, the positive coefficient for NumSess (0.0025) 

indicates that the heavy users, i.e., those who play more often, trend to upgrade earlier. Specifically, for 

consumers who have played one more game session of the previous generations, their average probability 

of upgrades increases by around 0.25%. The negative coefficient for GiniIndex (-1.3632) suggests that 

specialized players, those who spend most of their gaming time on a small subset of game modes (large 

GiniIndex indicating a low variety of usage), are less likely to upgrade to a new generation. This may 

appear to be counterintuitive at first glance. After much deliberation, our explanation is that specialized 

players, after exploring different game modes, might have already identified the game mode(s) they like 

the most, subsequently spend most of their time on a selected few game modes. As a result, they do not 

benefit as much from a product upgrade.  In other words, a high Gini-Index may indicate the player is 

satisfied with features of the current game generation in use, which lowers her desire to upgrade to a new 

generation. This is analogous to the current trend in the smartphone industry — consumers’ satisfaction 

with old-generation smartphones postpones upgrades (Martin and FitzGerald, 2018). Another possible 

explanation is that, because they use a relatively small portion of the available game modes, specialized 

players might benefit less from an upgrade, hence are less likely to upgrade to a new generation.  

Furthermore, the positive coefficient for EnhancePurchase (0.0017) reveals that consumers who 

have made more enhancement purchases in previous generations are more likely to upgrade. Although a 

relatively small proportion (around 18% according to our data) of players have ever made in-game 

purchases, they represent high-end consumers with a higher willingness to upgrade. Finally, the negative 

coefficient for RecentActDay (-0.0027) indicates that consumers who are active more recently (a smaller 

RecentActDay) have a higher probability to make upgrade purchases.   

In sum, the results in Table 4 confirm that consumers’ prior adoptions and usage experience are 

significant predictors for their likelihood of upgrade and time to upgrade. It is important to note that the 

results of the statistical tests here indicate the strength of associations between the covariates and the 

hazard rate (or the likelihood of upgrade), or how strong a predictor each of the variables is. They do not 

suggest cause-effect relationships. In the dataset we use in this study, we believe the real potential causes 
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that affect consumers’ time-to-update decisions, such as their disposable income, affection for the game, 

amount of leisure time, willingness to take risk, or promptness in actions, are actually unobservable to 

firms. The observables are manifestations of these personal traits, not the real causes. In this particular 

application, there is limited downside even if the real causes are unobservable, because the observables 

are easy to extract from existing data resources, and are all that is needed to apply the models developed 

in this research to make predictions or help making marketing decisions. 

5.2. Comparisons of Prediction Performance 

Because a survival model predicts the distribution of time-to-event, the prediction performance is firstly 

evaluated at the aggregate level—by summing up all consumers’ predicted upgrade probabilities in each 

time period, we obtain the predicted aggregate upgrade sales, which is then compared against the actual 

aggregate sales in the same period. This way, we can compare the Expo-Decay model with benchmark 

methods in the prediction of aggregate sales. Since the Cox PH model does not specify a baseline hazard 

function and thus cannot generate an absolute upgrade probability, the comparison is conducted between 

the Expo-Decay model and parametric benchmark models, i.e. Weibull, Expo-Power, and restricted Box-

Cox model.  

We use 75% of unique players’ records to estimate the model, and the remaining 25% for out-of-

sample test of prediction performance. Based on the values of the parameters estimated from the training 

sample, we calculate each individual record’s upgrade hazard rate based on Eq. (7), and thus the 

probability to upgrade, during each time interval in the testing set. By summing up the individuals’ 

probability to upgrade at each discrete time interval, we obtain the predicted monthly upgrade sales; the 

comparison with actual upgrade sales are summarized in Figure 4. The result shows that all four models 

produce predictions close to the actual quantities. We also observe that the predictions generated by the 

Expo-Decay model and the flexible Expo-Power and Restricted Box-Cox model are the closest.  
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Figure 4. Predicted Versus Actual Monthly Upgrade Sales 

To compare the prediction performances in a more systematic manner, we use four metrics, 

including Theil’s inequality coefficient, Mean Squared Error (MSE), Mean Absolute Error (MAE), and 

Mean Absolute Percentage Error (MAPE). With all four metrics, a small number indicates a better 

prediction. The Theil’s inequality coefficient (Theil 1961) is defined as: 

𝑈 =
√∑ (𝑦𝑡−�̂�𝑡)2𝑇

𝑡=1 /𝑇

√∑ (𝑦𝑡)2𝑇
𝑡=1 /𝑇+√∑ (�̂�𝑡)2𝑇

𝑡=1 /𝑇

,     (10) 

in which 𝑦𝑡 and�̂�𝑡 are actual and predicted number of upgrades in month t. The coefficient U ranges from 

0 to 1, where a smaller value indicates a better prediction performance.  

Table 5. Comparison of Upgrade Sales Predictions 

 Weibull Expo-Power 
Restricted 

Box-Cox 
Expo-Decay 

Theil’s Coefficient 0.0269 0.0198 0.0196 0.0198 

MSE 559.55 302.41 297.68 303.36 

MAE 15.36 11.95 11.86 11.27 

MAPE 74.74%  36.36% 35.86% 35.24% 

 

From the comparison summarized in Table 5, we conclude that the Expo-Decay model performs as 

good as the Expo-Power model and the restricted Box-Cox model, and significantly better than the 

Weibull model. This result, coupled with the fact that the Expo-Power and the restricted Box-Cox models 
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are less parsimonious and are far more difficult to interpret, leads to the conclusion that the proposed 

Expo-Decay model is a superior predicting model.  

Even though a distribution cannot be directly compared with a realized time, we can use the 

distribution of time produced by the Expo-Decay model to compute individual consumers’ probability of 

making an upgrade purchase during a prespecified time period, which is then comparable to the output of 

a classifier. To evaluate its performance at the individual level, we compare the prediction accuracy of the 

Expo-Decay model with that of a logistic regression using the area under a time-dependent receiver 

operating characteristic (ROC) curve (Bradley 1997). Figure 5 shows the area under the curve (AUC) for 

predicting an existing user making upgrade purchase one month after release, two months after release, 

and so on. Experiment results demonstrate that the proposed Expo-Decay model always dominates the 

benchmark logistic regression.  

 
Figure 5. AUC of Individual Upgrade Predictions (Expo-Decay vs. Logistic) 

With all empirical results considered, we conclude that the Expo-Decay model is an effective 

method in explaining and predicting existing consumers’ time-to-upgrade decisions.  

6. Model Extensions 

As a parsimonious model, the Expo-Decay model leaves open the possibility for model variations and 

extensions. In this section, we develop and evaluate three extension models to account for unobserved 

consumer heterogeneities, more detailed adoption history, and more frequent updates of variable values.  
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Table 6. Estimation Results for Extended Models 

 Expo-Decay Frailty Expo-Decay Double Expo-Decay 

Variables 
Coefficient 

(Std.) 
Coefficient 

(Std.) 
Coefficient 

(Std.) 

NumGens 
0.4479 

(0.0143) *** 
0.6538 

(0.0260) *** 
0.6729 

(0.0150) *** 

WaitDays 
-0.0015 

(0.0001) *** 
-0.0015 

(0.0001) *** 
−− 

Switch 
0.3330 

(0.0334) *** 

0.5006 

(0.0460) *** 
−− 

NumSess 
0.0025 

(0.0001) *** 
0.0059 

(0.0004) *** 
0.0032 

(0.0001) *** 

GiniIndex 
-1.3626 

(0.1783) *** 
-1.8418 

(0.2395) *** 
-1.7273 

(0.2006) *** 

EnhancePurchase 
0.0017 

(0.0003) *** 

0.0107 

(0.0019) *** 

0.0020 

(0.0003) *** 

RecentActDay 
-0.0027 

(0.0001) *** 
-0.0028 

(0.0001) *** 
-0.0028 

(0.0001) *** 

𝛼 
0.1687 

(0.0039) *** 
0.1476 

(0.0042) *** 
0.2069 

(0.0084) *** 

𝛾 
0.1291 

(0.0214) *** 
0.1781 

(0.0413) *** 
0.1064 

(0.0201) *** 

𝜎2 −− 
0.9941 

(0.0844) *** 
−− 

𝛼𝐺−3 −− −− 
0.0029 

(0.0011) ** 

𝛼𝐺−2 −− −− 
0.0040 

(0.0015) ** 

𝛼𝐺−1 −− −− 
0.0391 

(0.0064) *** 

𝜙𝐺−3 −− −− 
0.0271 

(0.0088) ** 

𝜙𝐺−2 −− −− 
0.0479 

(0.0114) *** 

𝜙𝐺−1 −− −− 
0.1415 

(0.0102) *** 

BIC 56315.81 56059.33 56945.27 

6.1. Frailty Expo-Decay Model 

In reality, it is typical that only a proportion of players’ profile or shopping and usage history is 

observable, even though unobservable factors may have impacted existing players’ upgrade hazards as 

well. According to Jain and Vilcassim (1991), the empirical estimation might be biased in the absence of 

unobserved heterogeneity. To address this potential limitation, we introduce a random variable 𝜃 to the 

baseline hazard function to capture the unobserved consumer heterogeneity:  

ℎ(𝑡|𝑋𝑖 ,  𝜃) = 𝜃 ∗ ℎ0(𝑡) ∗ 𝑒𝑋𝑖𝛽 .    (11) 
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We assume that 𝜃 follows a gamma distribution with an expected value of 1, 𝜃~𝐺𝑎𝑚𝑚𝑎(
1

𝜎2 ,
1

𝜎2), 

𝐸(𝜃) = 1, and 𝑉𝑎𝑟(𝜃) = 𝜎2. Correspondingly, the survival function takes the form of 

𝑆(𝑡|𝑋𝑖 ,  𝜃) = exp {− ∫ 𝜃 ∗ ℎ0(𝜏) ∗ 𝑒𝑋𝑖𝛽𝑡

0
𝑑𝜏}.     (12) 

This model is termed as Frailty Expo-Decay model. From the empirical estimation results 

summarized in Table 6, we can see that this model extension does improve model fitting. By introducing 

just one more parameter, the Frailty Expo-Decay model provides the best model fitting (in term of BIC).  

However, the Frailty Expo-Decay model does not perform as well as the baseline Expo-Decay 

model in predicting aggregate upgrade sales (see Table 7) and individual upgrade timing as measured by 

AUC (see Figure 6). This comparison shows that, despite the existence of unobservable covariates, 

aggregate measures of players’ past adoption and usage experience can be effective predictors of their 

future upgrade decisions. It is possible that, in an attempt to capture the unobservable consumer 

heterogeneity, the Frailty Expo-Decay model leads to overfitting, thus hurting its prediction performance. 

Table 7. Aggregate Upgrade Sales Prediction 

PHMs Expo-Decay Frailty Expo-Decay 
Double Expo-

Decay 

Theil’s Measure 0.0198 0.0210 0.0207 

MSE 303.36 334.45 325.5 

MAE 11.27 12 11.68 

MAPE 35.24% 36.63% 37.30% 

 

 
Figure 6. AUC of Individual Upgrade Predictions by Extension Models 
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6.2. Double Expo-Decay Model 

In the baseline Expo-Decay model, an existing player’s previous adoptions are aggregated into 

cumulative variables (e.g. NumGens and WaitDays) to reflect the player’s experience with the product 

series. If a more refined view is taken, consumers’ adoption experience with more recent generations 

might be a stronger predictor of future upgrade decisions than their experience with older generations. For 

instance, if one consumer adopted three previous generations 7, 6, 5 years ago, respectively, and another 

consumer adopted three previous generations 4, 2, 1 years ago, respectively, although NumGens = 3 in 

both cases, it can be argued that the two consumers’ past adoption experience are not the same. Therefore, 

instead of using aggregated variables to represent a player’s adoption history, we propose an extension 

model that directly captures consumers’ discrete adoption behaviors while assuming that the predicting 

power of these adoption events decays over time. Mathematically, the extension model is characterized by 

the following hazard rate:  

ℎ(𝑡, 𝑋𝑖) = ℎ0(𝑡)𝑒𝑋𝑖
′𝛽 + ∑ 1𝑖,𝑔 ∗ 𝛼𝑔 ∗ 𝑒−𝜙𝑔  ∗ (𝑡−𝜏𝑖,𝑔)𝐺−1

𝑔=1 ,    (13) 

where 1𝑖,𝑔 indicates whether consumer i has adopted generation g, 𝛼𝑔 measures the influence of the 

adoption of generation g with a decaying factor 𝜙𝑔, and 𝜏𝑖,𝑔 denotes the time at which player i activated 

generation g. Given this additional decaying factor, we call this extension model the Double Expo-Decay 

model.  

The empirical result in Table 6 for the Double Expo-Decay model confirms that adoptions of 

previous game generations show different level of association with future upgrade timing: the activations 

of more recent game generations have a stronger association with future upgrade timing, although their 

strength of association also decays faster. However, the Double Expo-Decay model does not seem to 

improve on model fitting in terms of BIC. This is because, although modeling previous adoption events 

individually minimizes errors in model fitting, the BIC measure penalizes the extension model because of 

the newly introduced parameters. Compared to the Double Expo-Decay model, the baseline Expo-Decay 
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model can adequately explain consumers’ upgrade behaviors without modeling each individual adoption 

event.  

In addition to the aggregate sales, we also evaluate the models’ prediction performance for 

individual player’s upgrade decisions. As we can see from Table 7 and Figure 6, the Double Expo-Decay 

model is inferior to the baseline model in terms of prediction accuracy. We again believe that this is due 

to overfitting resulting from applying the more complicated model.  

6.3. The Time-Variant Model Extension  

For the baseline Expo-Decay model as well as the two extension models discussed so far, the values of 

the predictor variables are obtained using existing players’ adoption and usage data up to the release date 

of the focal new generation. In other words, even if a player continues to use a previous generation after 

the release date of the focal generation, the additional usage data is not used in model fitting and 

prediction. Apparently, if a firm would like to continuously analyze its market and make predictions, the 

methods we have used thus far would be limited. For instance, in our data, one player adopted G-13 and 

G-14 1.4 months and 4.9 months after their respective release dates. After G-15 is released, the estimated

upgrade timing by the baseline model is around 6 months. However, we find that the player adopted G-12 

and played G-12 for a few sessions. The player eventually made her upgrade purchase of G-15, but one 

year after its release date. 

In settings where analysis and prediction are needed after the release date of a new generation, we 

propose a time-variant extension to the Expo-Decay model, in which the variables reflecting players’ 

experience are time-variant: 

ℎ(𝑡, 𝑋𝑖(𝑡)) = ℎ0(𝑡) ∙ exp[𝑋𝑖(𝑡)′𝛽]; (14) 

and the corresponding survival function becomes 

𝑆(𝑡, 𝑋𝑖(𝑡)) = 𝑒− ∫ ℎ0(𝑢)∙exp𝑋𝑖(𝑢)′𝛽𝑑𝑢
𝑡

0 . (15) 

Analogous to the baseline Expo-Decay model, we propose a discrete version of the model for use with 

discrete-time data: 
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𝑆(𝑡, 𝑋𝑖(𝑡)) = 𝑒− ∑ {exp𝑋𝑖(𝑢)′𝛽∙∫ ℎ0(𝜏)
𝑢

𝑢−1 𝑑𝜏}𝑡
𝑢=1 .      (16) 

The experience-based variables, 𝑋𝑖(𝑡), are recomputed at the beginning of each discretized time 

interval and then used to compute the hazard rate for the next interval. While the variables are being 

updated over time, the coefficients 𝛽 are fixed.  

We repeat our empirical testing and compare the performance of time-variant models with those of 

time-static models. The results are summarized in Table 8. As shown in the table, unlike the first two 

model extensions, the time-variant extension does lead to a better model fitting result, reflected by a lower 

BIC value. 

Table 8. Estimation Results for Time-Variant Models 

 Time-Static 

Model 
Time-Variant 

Model 

Variables 
Coefficient 

(Std.) 
Coefficient 

(Std.) 

NumGens 
0.4479 

(0.0143) *** 
0.4436                              

(0.0143) *** 

WaitDays 
-0.0015 

(0.0001) *** 

-0.0016                       

(0.0001) *** 

Switch 
0.3330 

(0.0334) *** 
0.3228                        

(0.0314) *** 

NumSess 
0.0025 

(0.0001) *** 
0.0013                       

(0.0001) *** 

GiniIndex 
-1.3626 

(0.1783) *** 
-1.6862                      

(0.1904) *** 

EnhancePurchase 
0.0017 

(0.0003) *** 
0.0022                   

(0.0003) *** 

RecentActDay 
-0.0027 

(0.0001) *** 
-0.0026                        

(0.0001) *** 

𝛼 
0.1687 

(0.0039) *** 
0.1228                       

(0.0041) *** 

𝛾 
0.1291 

(0.0214) *** 
0.1900                         

(0.0333) *** 

BIC 56315.81 56305.76 

 

We also compare the prediction accuracy of the time-variant Expo-Decay model with that of the 

baseline Expo-Decay model, i.e., the time-static Expo-Decay model. Since the time-variant model 

requires variables to be updated overtime, it is not appropriate to be applied in forecasting upgrade sales 

at the release date. Thus, we evaluate the performance of time-variant model on predicting individual 
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player’s upgrade decisions using time-dependent ROCs. As shown in Figure 7, the time-variant Expo-

Decay model outperforms the static Expo-Decay model in prediction accuracy. 

  
 

Figure 7. AUC of Individual Upgrade Predictions by Extended Models 

6.4. Model Complexity vs. Data Quality 

In the comparison between the Expo-Decay model and existing benchmark models, we find that the 

simpler Expo-Decay model performs as well as or better than more complex models. The comparison 

between the Expo-Decay model and the first two extension models leads to a similar observation—

models with higher complexity or more parameters do not necessarily lead to better performance. On the 

other hand, our fourth test shows that the time-variant Expo-Decay model, which essentially keeps the 

original model formulations but uses more up-to-date data, performs clearly better than the baseline 

Expo-Decay model that does not update the values of predictor variables.  

These comparisons lead to a conclusion we would like to highlight—for predictive analytics, data 

quality could be more important than model complexity in helping improve prediction performance. 

Therefore, instead of overspending on developing more complicated models, it might be more cost 

effective to invest in improving data quality. 

7. Concluding Remarks 

Continuous quality improvements and frequent releases of new generations in a product series is a 

common practice by businesses, which helps them counter competition, generate upgrade purchases, and 
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maintain market share. In the presence of successive product generations, it is important to understand 

consumers’ upgrade decisions when a new product generation becomes available. In this study, we are 

interested in an increasingly common scenario, where pre-release virtual adoptions account for a 

significant proportion of upgrade sales of a new product generation, and the upgrade hazard rate exhibits 

a declining pattern after the product release. We propose an Exponential-Decay Proportional Hazard 

Model (Expo-Decay model) to examine how existing consumers’ past experience (i.e. adoption and usage 

behavior) helps predict their time-to-upgrade decisions.  

This study makes an important methodological contribution to the existing survival analysis 

literature. Specifically, the Expo-Decay model we propose can help explain the declining upgrade hazard 

rate of a new product generation when pre-release virtual adoptions account for a significant portion of 

upgrade sales. The Expo-Decay model is parsimonious, easy to interpret, and delivers excellent model 

fitting and prediction performance compared to existing parametric proportional hazard models, hence it 

has the potential of wide application in future academic research. Furthermore, we propose two time-

static model extensions and one time-variant extension for use in different business settings. Our test 

results show that more complex model formulations do not lead to better prediction performance than the 

baseline Expo-Decay model, while the time-variant extension that updates the values of covariates over 

time outperforms the baseline Expo-Decay model with static data. These model extensions provide 

additional ready-to-use specifications for future research and practice applications.  

This study also contributes to our understanding of the factors that help predict consumers’ time to 

product upgrade. Although the existing literature have identified some drivers that may influence 

consumers’ upgrade decisions, this study fills a void by linking consumers’ past adoption and usage 

experience to future upgrade purchases. Using a rich dataset for a video game series, we find that 

consumers’ prior adoptions and usage experience are significant predictors for their likelihood of upgrade 

and time to upgrade purchase. In particular, we find that (i) after a new product generation is released, 

potential switching consumers who are using the immediate past generation are more willing to upgrade; 
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(ii) consumers who use previous product series more often tend to upgrade earlier; and (iii) consumers 

who specialized in a small subset of product features demonstrate a higher upgrade probability.  

The proposed survival model and the empirical findings also have important managerial 

implications. The Expo-Decay model can be used to predict future upgrade sales, which can help a firm 

better manage the production, promotion, and distributions of a new product generation. The findings 

regarding how consumers’ prior adoption and usage experience affects their time-to-upgrade can help 

firms segment their market, design and deliver more specialized products for different types of 

consumers, and develop personalized promotions to target consumers. Such personalized marketing 

efforts can increase consumer satisfaction and improve the efficiency of operations, leading to better and 

longer-term profitability.  

This current study is not without limitations, which suggests several interesting future research 

directions. First, we validate the proposed Expo-Decay model using video games dataset only. A future 

study could test the model for other product categories and possibly develop a more specialized model 

based on observed sales growth patterns. Second, we do not consider the impact of marketing mix 

variables, such as price and promotion, on consumers’ time-to-upgrade decisions. It could be interesting 

to extend the proposed Expo-Decay model to capture the impact of marketing mix variables. Third, one 

could check the various information channels (e.g., social media) through which consumers can collect 

information about a new product generation, and examine whether different information channels affect 

consumers’ upgrade decisions differently. 
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