TY - JOUR
T1 - Predicting upgrade timing for successive product generations
T2 - An exponential-decay proportional hazard model
AU - Qu, Xinxue
AU - Lotfi, Aslan
AU - Jain, Dipak C.
AU - Jiang, Zhengrui
PY - 2022
Y1 - 2022
N2 - In the presence of successive product generations, most consumers are repeat buyers who may decide to purchase a future product generation even before its release. Therefore, after a new product generation enters the market, its sales often exhibit a declining pattern, which renders traditional diffusion models unsuitable for characterizing consumers’ decisions on upgrade timing. In this study, we propose an Exponential-Decay proportional hazard model (Expo-Decay model) to predict consumers’ time to product upgrade. The Expo-Decay model is parsimonious, interpretable, and performs better than do existing models. We apply the Expo-Decay model and three extensions to study consumers’ upgrade behavior for a sports video game series. Empirical results reveal that consumers’ previous adoption and usage patterns can help predict their timing to upgrades. In particular, we find that consumers who have adopted the immediate past generation and those who play games from previous generations more often tend to upgrade earlier, whereas those who specialize in a small subset of game modes tend to upgrade later. Further, we find that complex extensions to the Expo-Decay model do not lead to better prediction performance than does the baseline Expo-Decay model, whereas a time-variant extension that updates the values of covariates over time outperforms the baseline model with static data.
AB - In the presence of successive product generations, most consumers are repeat buyers who may decide to purchase a future product generation even before its release. Therefore, after a new product generation enters the market, its sales often exhibit a declining pattern, which renders traditional diffusion models unsuitable for characterizing consumers’ decisions on upgrade timing. In this study, we propose an Exponential-Decay proportional hazard model (Expo-Decay model) to predict consumers’ time to product upgrade. The Expo-Decay model is parsimonious, interpretable, and performs better than do existing models. We apply the Expo-Decay model and three extensions to study consumers’ upgrade behavior for a sports video game series. Empirical results reveal that consumers’ previous adoption and usage patterns can help predict their timing to upgrades. In particular, we find that consumers who have adopted the immediate past generation and those who play games from previous generations more often tend to upgrade earlier, whereas those who specialize in a small subset of game modes tend to upgrade later. Further, we find that complex extensions to the Expo-Decay model do not lead to better prediction performance than does the baseline Expo-Decay model, whereas a time-variant extension that updates the values of covariates over time outperforms the baseline model with static data.
KW - predictive analytics
KW - product upgrade
KW - proportional hazard model
KW - survival analysis
U2 - 10.1111/poms.13665
DO - 10.1111/poms.13665
M3 - Journal
SN - 1059-1478
VL - 31
SP - 2067
EP - 2083
JO - Production and Operations Management
JF - Production and Operations Management
IS - 5
ER -